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ON THE COMPARISON THEOREM OF KNESER-HILLE

AUREL WINTNER

1. This note deals with a criterion for the oscillatory or disconjugate
character of a differential equation

(1) 2" +f(t)x = 0

on a half-line const. <¢< oo, when (1) is compared with a differential
equation of the same form, say with

(2) y'+gt)y =0
(concerning the nomenclature, and for a presentation of some of the
known results, cf. [1, 227-234]).

For large positive ¢, let f(t), g(¢) be a pair of real-valued, continuous
functions for which the integrals

oo oo <) T

3) S fit)de, Sg(t)dt, where S:lims,

T —>o00

are convergent (possibly just conditionally). Suppose further that the
integrals (3), when considered as functions,

0 o0

(4) P =\ f)ds, 60 = {gs)ds,

12
of the lower limit of integration, satisfy the inequalities
(5) 0 =G = F@)
(for large ). The set of these assumptions will be referred to as condi-
tion (*).
A “non-oscillation theorem” of Hille [5, p. 245], when re-stated in the

form of an ‘“‘oscillation theorem”, can be formulated as follows: If the
pair (f, g) satisfies condition (*) and if, in addition,

(6) f@) z0, g z0,
then, in order that (1) be oscillatory, it is sufficient that (2) be oscillatory.
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Hille’s proof of this comparison theorem involves successive approxima-
tions, and the restriction (6) is essential in the resulting proof.

Actually, whereas (6) and the convergence of the integrals (3) imply
that

™ Jirwlae < {igora < =,

(7) and (5) do not imply (8), and the proof is such as to fail even if (7)
is assumed but (6) is omitted. It will be shown, however, that not only
(7) but even (6) can be dispensed with if the proof based on the method
of successive approximations is replaced by a more primitive approach.
The latter will consist of an appropriate use of that simple argument on
which all considerations on ‘“‘disconjugation” depended in [8], where
these matters were abstracted from Sturm’s theorems on the one hand
and from a fact occurring in the proof of Jacobi’s criterion (cf., e.g.,
[2, pp. 57-59]) on the other hand. For other uses of that argument, cf.
[3] and [4, pp. 216-217].

2. It is well known that if f(¢) is any continuous function satisfying

o]

(8) /)20 and S F)dt = oo,

then (1) must be oscillatory?; in fact, this follows by a trivial argument
of convexity (cf., e.g., [6, p. 97]). But as observed in [7, p. 115], a slight
refinement of that argument proves that (1) must be oscillatory even
if (8) is relaxed to P

(9 Sf(t)dt 00 as T —» o

1 Tt is worth mentioning that the oscillation criterion (8) contains a refinement of itself,
as follows: If f(t) is continuous and non-negative on (3), and if
(s ]

Sfo(t)dt = oo

Jor some ¢ > 0, then (1) i3 oscillatory (this reduces to (8) if ¢ is chosen to be }). The limiting
case ¢=0 is not allowed, since the case ¢ =0 of the integral condition is satisfied by
f(¢)=(2t)"2 but (1) has then the solution x(t) =1}, which is non-oscillatory.

First, if [f(¢)] denotes the integral of f over some half-line const. <t< oo, then the
oscillation criterion (8) can be re-stated as follows: (I) If f(¢) = 0 and if (1) is non-oscillatory,
then [f(¢)] < co. But as observed by P. Hartman (Amer. J. Math., vol. 74 (1952), p. 397),
this criterion (I) contains, after a change of variables, the following refinement (II) of
its own: (II) If f(¢) =0 and if (1) is non-oscillatory, then [f (%] < oo holds for every
fixed 0 < 1. On the other hand, since [t77] < oo if p > 1, Hélder’s inequality shows that
if [f(8)t% < oo for some positive @ < 1, then [f}14(#)] < co for some &> 0. Hence, the
italicized oscillation criterion follows from the re-statement (II) of (I).
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(provided that f(t) is real-valued and continuous). It is precisely the
possibility of generalizing (8) to (9) which suggested the possibility of
removing the restriction (6) from Hille’s comparison theorem. What thus
results is the following criterion:

@) If (f, 9) is a pair of functions satisfying condition (*), then (1) must
be oscillatory whenever (2) is oscillatory.

Since the assertion of (i) is equivalent to the statement that, under the
(*)-assumption, (2) must be non-oscillatory whenever (1) is non-oscilla-
tory, substantially more than the assertion of (i) is contained in the fol-
lowing assertion:

(ii) If (f. g) ts a pair of functions satisfying condition (*), and if (1) is
disconjugate on o given half-line

(10) tg <t < o0,
then (2) must be disconjugate on (10).

In fact, the disconjugate character of (1) on (10) implies that (1) has
some (real-valued) solution x=a(¢) which has no zero on (10).

3. The proof of (ii) proceeds as follows:

If the assumptions of (ii) are satisfied when ¢, is fixed in (10), then they
are satisfied when ¢, is replaced by any #,+&>{, in (10). But then some
solution «(¢) of (1) has no zero for ¢ >¢,+¢. Hence it will be sufficient to
prove that, under this assumption, (2) is disconjugate on the half-line
ty+ &<t <oo when ¢> 0 is fixed. In fact, the disconjugate character of (2)
on (10) will then follow by letting ¢ -~ 0. Thus it is clear that it is suf-
ficient to prove (ii) under the assumption that (1) possesses a (real-
valued) solution z(¢) which has no zero on the fixed half-line (10).

Starting with such an z(¢), it is possible to form the logarithmic deriv-
ative I=z'[z (Riccati) as a continuously differentiable function I(¢) on
(10.) Suppose that the first of the integrals (3) is convergent, and define
F(t) by the first of the relations (4). Then I'= —f—1i2. It follows that

T
(11) UT) + Slz(s)ds

t

has a limit when 7' — oco. If the integral

L{t) = Sl2(s)ds
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diverges, it is clear that /(7') tends to — oo, in which case, however, the
assumption of a finite upper bound for (11) readily leads to a contradic-
tion. Thus lim{(7'), where T' — oo, exists and is 0 by necessity; so that
L@t)+ F(t)=1(). This identity can be written in the form

[L(t)+F@) + L'(t) = 0.

Hence, if G(t) is any continuous function satisfying (5) on (10), then, since
function (11) is non-negative throughout, the equation

@) + [LE+G@) + L'()) = 0

defines on (10) a continuous non-negative function p(t).

4. Let the latter equation be written in the form
(12) L'+ 12 + 2G@)L + [G%(t)+p(&)] = 0,

and let (12) be interpreted as a differential equation for L= L(t), with
G(t) and p(¢) as given coefficient functions. This non-linear differential
equation has some solution which exists on the entire half-line (10); in
fact, the function (11) supplies such a solution of (12). On the other
hand, (12) can be interpreted as the Riccati equation belonging to the
homogeneous, linear differential equation

(13) W’ + 26(0)u’ + [GX)+p(t)]u =0,

the L of (12) being Riccati’s (logu)’ =u'[u for (13). Since some solution
of (12) exists on the whole of (10), it follows that (13) is disconjugate on
(10) (this is the crucial step, the appeal to the argument of [8] on dis-
conjugation, referred to at the end of Section 1 above).

Since (13) is disconjugate on (10), and since p(f) =0, it now follows
from Sturm’s comparison theorem that the homogeneous, linear differen-
tial equation

(14) v+ 20(1) 0 + GX(t)v = 0

is disconjugate on (10). Hence, the proof of (ii) will be complete if it is
shown that, by virtue of the second of the relations (4), a relation which was
not used thus far, (2) must be disconjugate on (10) if (14) is disconjugate
on (10). But this can be verified as follows:

Choose a point ¢=c on the half-line (10) and, in terms of any solution
u(t) of (13), define on (10) a function y(¢) by placing

i
(15) y(t) = v(t) exp S Q(r)dr, where G(t) = Sg(s)ds ,
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as in (4). A direct substitution shows that (14) is identical with (2) by
virtue of (15). But since the exp-factor in (15) has no zero, the zeros of
a solution of (2) are the same as the zeros of the corresponding solution
of (12).

The proof of (ii) is now complete. Hence (i), being a weakened form
of (ii), is also proved.

5. The simplest corollary is the following oscillation theorem:
(iii) For large positive t, let f(t) be a real-valued, continuous function for
which the integral o o P
F(t) = Sf(s)ds, where S = lim S,

v T—>oot

18 convergent (possibly just conditionally). Then (1) is oscillatory whenever
F(t) > C?t holds for some constani C' >} (and the latter condition is opti-
mal, since C'=1 is not allowed; cf. the case C=1 of (16) below).

That particular case of (iii) in which the assumption F(f)>C? is
strengthened to f(t) > (C/t)?, where C > }, follows from Sturm’s comparison
theorem, since, as observed by A. Kneser (cf. [1, p. 235]), the case

(16) f@o = (Cfr)?

of (1) is oscillatory or non-oscillatory according as >4 or 0C<4.
Hence, that particular case of (iii) in which f(¢) is assumed to be non-
negative, follows from Hille’s comparison theorem, referred to above.
Correspondingly, in order to obtain (iii) in the general case, it is sufficient
to apply (i) so as to compare (1) with the case (16) of (1).

6. For the same reasons, the ‘non-oscillatory’”” counterpart of the
“oscillatory’ criterion (iii), the counterpart of which is Satz (4.4. VI) in
[1, p. 231], is a corollary of (ii). In fact, that counterpart of (iii) states
that if o

(7 S fHt)dt<oo,  where f+ = min(0, f)

(so that f+(t)20), and if
(18) g FHe)ds < (4)1
!
on (10), where t,= 0, then (1) is non-oscillatory, and even disconjugate
on (10). But (17) need not hold when it is only assumed that the integral

0 =5} T

(19) Sf(t)dt, where S = lim S,

T-»o00
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is convergent; and even if (19) is absolutely convergent, (18) need not
hold if %
(20) 0 < S f(s)ds < (46)1 .

t
It turns out, however, that (17) and (18) can be reduced to the (possibly
just conditional) convergence of (19) and to (20). In other words, the
situation is as follows:

(iv) If f(¢) is a continuous function for which the integral (19) is conver-
gent, and if (20) holds on a half-line (10), where t,20, then (1) is non-
oscillatory, and even disconjugate on (10).

In fact, since the case (16) of (1) is disconjugate on O<t< oo if C=1}
(for x(#) =t} is then a solution), it is clear that (iv) follows by interchanging
fand g in (ii).

The constant (?=4-1 occurring in the second of the inequalities (20)
is the best absolute constant. In addition, the first of the inequalities
(20) is essential. In fact, (1) can be oscillatory if the integral occurring in
(20) 4s allowed to become negative (for certain t) but all other assumptions
of (iv) are satisfied. For otherwise it would follow that (1) must be non-
oscillatory whenever f(¢) is a continuous function satisfying

Sf(s)ds =0 for ty<it< o

(provided the integral is convergent). But this is readily disproved by
a (piecewise) construction of an appropriate f (which is positive on
certain t-intervals). This means that even the simplest converse of the
oscillation criterion (9) is false.
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