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ON SPECTRAL FUNCTIONS BELONGING
TO AN ELLIPTIC DIFFERENTIAL OPERATOR WITH
VARIABLE COEFFICIENTS

GUNNAR BERGENDAL

In this paper we shall prove some theorems on the asymptotic proper-
ties of the spectral functions belonging to semi-bounded, self-adjoint
extensions of an elliptic differential operator with variable coefficients.

Let R be the real line and let B™ be real n-space. We shall consider
an open subset S of B® when n> 1, and we shall denote by C¥(S) all k
times continuously differentiable functions defined on 8. (C°(S) are the
corresponding continuous functions.) Let Cg*(8) be the set of functions
in C%(S) vanishing outside compact subsets of S, and put C(S)=NC*(S)
and Cy(S) =MNC*(8) for the corresponding sets of infinitely differentiable
functions. Let @ be a linear differential operator of order m, defined on
S and with suitably differentiable coefficients:

a=aD) =3 a,@D, |x=<m,
D* =D ...D,* D, =1i1¢[ox, .
Its principal part is
Pa = a,(x)D* |x| =m,
and its adjoint a* with respect to the scalar product

(t.9) = {f@7@ds

8
a* = ' D*a, ().

We say that a is symmetric if a=a* and that a is elliptic if the charac-
teristic polynomial of Pa,

Pa(z, &) = a,(x)&, ] =m (feR & =& ... £,

is
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never vanishes when £+0. If a is both symmetric and elliptic, then Pa
has real coefficients; and hence, since n > 1, m has to be even. Consider
this case. Changing if necessary a to —a, we can also assume that Pa > 0.
Let H=H(S) be the Hilbert space of all square integrable functions
on § with the scalar product (f, g). Consider @ as an operator from H
to H, with domain of definition Cy™(S). It has at least one self-adjoint,
semi-bounded extension. Denote such extensions by 4, 4,, 4,, ...

Let
A= S 2dE,

be the spectral resolution of A. The spectral function e(4, z, y), belong-
ing to 4, is a kernel such that

(B,f)(y) = S e(h, ©, y)f(x)da

for almost all y, when fe H. The existence and the properties of
e(d, z,y) are discussed by Garding [8]. It is a Borel function on
R x8x8; for fixed 4 it has any prescribed differentiability in « and v,
provided that the coefficients a, are sufficiently differentiable; it is
hermitian and has the Carleman property

S|e(,1, 2, y)|2dz < oo.

It vanishes when 1< A. Its total variation when A varies in a finite
interval is bounded on compact subsets of § x S.
When the spectrum is discrete, then

e(A, x, y) =l§l%—(x—)¢k(y)

where ¢, are the orthonormalized eigenfunctions belonging to the eigen-
values 4;,. When S=R" and a=a(D) has constant coefficients, then the
self-adjoint extension is unique. It is diagonalized by the Fourier trans-
form and its spectral function is

etz y) = @ | eentae
a@g)<a

Asymptotic formulas for spectral functions were first proved by Carle-
man [3]. A general version of Carleman’s result is the following, proved
by Garding [8].

Let
Pa(z, D,) = X' a,()D*, || =m,

be the differential operator with the constant coefficients a,(z). Then
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e, @, y) = (2=m)™™ e~t@-vEdE
Patz,§) <4

is the spectral function of the self-adjoint extension of Pa(z, D,), con-
sidered on the whole space. We have

TurorEM 1. If e and e, are the spectral functions defined above, then
(0.1) e, @, y) = e,(4, , y) + o(A*™),
untiformly on compact subsets of 8 x S.

If the spectrum of A4 is discrete and if 8 is bounded, then by a formal

integration we obtain Weyl’s asymptotic law for the number N(4) of
eigenvalues ;,, smaller than 2,

N(G) = Sex(l, w, @)de + o(Anm) .
S

Under suitable conditions the integration can be justified.
The estimate (0.1) is rather rough. In fact, Garding has proved in [8]
that if @ has constant coefficients, then

(0*2) Ike(ﬂ': Z, ?/) = Ikeo(ﬂ': €, ?/) + O(Z(n—k)/m) .

Here I* is the Riesz mean of order %k on the interval (1,, 1), defined by

-

I¥o(2) = I'(k)~" (A= 20)'~*\ (A—p)* ' do(u)

e

for any o of bounded variation.
In this paper, we shall give a new proof of (0.1), and also in a sense
generalize (0.2) to the case of variable coefficients. We shall show

THEOREM 2. If A, and A, are semi-bounded self-adjoint extensions of a,
of e, and ey are the corresponding spectral functions, and if Ay<min (4,, 4,)
and k=1, then
(0-3) Ik(el(ﬂ" z, ?/)—ez(l, €T, ?/)) = 0(l(n+1—k)lm) ’

uniformly on compact subsets of S x S.

To get a complete analogue of (0.2) we have to find the analogue of ¢,
when @ has variable coefficients. The formula (0.1) shows that the
dominating part of this function is e (4, z, ) and it might be possible
to give an asymptotic series for e,. A result in this direction is given by
Avakumovié¢ [1]. Levitan has also studied the spectral function for
equations with variable coefficients, see e.g. [10].

We shall prove our theorems by estimating Green’s function
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G,z y) = ge-”de(l, z, y)
for the parabolic operator .
L=A4-90/ct, ¢t>0.
It has the property that
uty) = | Gt 2 f@dz, feCyS)

solves the equation
(4 +0/otyu = 0, u(0,.) = f.

When a has constant coefficients, then Green’s function corresponding
to 4, is
Golt, z, y) = Se*"deo(l, x, y)

= (2m)— S e—ta@-i@-vkdE
En :
and one has the estimate (Garding [8])
Gt x,y) = Gyt, x,y) + O(1)exp{—Ct—+}, 0 <t<i,

where u=m —1. A Tauberian argument then implies (0.2).

In the case of variable coefficients we shall substitute for G, a funda-
mental solution I" of the operator L, constructed by Ejdelman [5]. We
shall prove that

(04) GQt,x,y) =TItz y)+ O(l)exp{—-Ct+}, 0<i<iy,

uniformly on compact subsets of S x§.
An immediate consequence of (0.4) is

(0'5) Gl(t7 zx, 3/) —G2(ts z, y) = 0(1) eXP{"Ot—”} )

and this together with a Tauberian theorem gives Theorem 2.
The fundamental solution I" is obtained as a Neumann series with the
leading term

Ht, z,y) = 2n)—™ S e~ tPa@,O)~i(@~k g
= Se"‘dex(l, ,9),
and we have
(0.6) I'(t,z,y)—H(, =, y)
= O(1)t@-"/m exp{~Clz—y[I*#t-+}, 0 <t <ty.

Hence
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07)  evdlet 2,90 et 9) = Oemm), 0 <t <ty
and now a Tauberian argument proves Theorem 1.

1. The fundamental solution. In this section we shall introduce the
fundamental solution I'(t, z,y) of the parabolic differential operator
a(x, D)—0/ot. Here a is not necessarily symmetric. We shall denote by
a* the algebraic adjoint of a, satisfying

\af-g = \faxg,  figecy®.
yora=}

By definition, the function I'(¢, x, 2), ¢ >0, is a fundamental solution of

a—afot it
(11) Sdtlgl’(tl—t, z, 2) {a*(z, D) —0[at,}f(ty, 2)dz = f(t, z)
!k

for all fe Co(Rx8). Ejdelman constructed the fundamental solution I’
with the aid of the parametrix H(t, =, z), following the method of E. E.
Levi. (Already Bruk [2] constructed such a function I, but he did not
obtain the important estimates (1.3) and (0.6).) Put

Z(t, %, 2) = {Pa(z, D,)—a(z, D)}H(t, z, z)
define f o g by

t

(fo 0t 2) = (a7t 2. 91906 v, 2)dy

0

f‘m(t} z,2) = (!‘_O—""_i)(t: z, z) .

n

and put

Then
(1.2) I'¢ z,2) = (Heo 3 Z°)(t, x, 2), n=2012 .

This series converges for all t>0 and all (x, 2) € § x 8, and I" is differen-
tiable any prescribed number of times if the coefficients of a are suffi-
ciently differentiable. Further, the estimates (0.6) and

(1.3) (¢/ot)kD,*DLI'(t, x, z)
= O(1)t=Fmtlal+lpl+nym exp { — Clx —z|Mtet—+}, 0 <t < 1y,
hold. An immediate consequence of (1.1) is

(1.4) {a(z, D,)+0[ot}I"(t, x,2) = 0  when =« +z.

Math. Scand. 5. 16
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‘We shall show that

ult, 2) = Sf(t, @, 2)f@)ds, feO2AS),
S

is a solution of the equation

(1.5) (a+0/ot)u = 0

with

(1.6) u(0, 2) = limwu(?, 2) = f(z) .
t—>0

It is clear from (1.3) and (1.4) that (1.5) holds. Let us compute

lim Sl’(t, z, z)f(x)dx .

1—>0

The integral is equal to

(27)—" S e-tPa@ -t@—2¢ f(x)dedE + S(F—H)(t, x, 2)f(x)dx .
(B2 S

Here the first integral tends to
(27)- g eiztdE g e-itf(z)da = f(2)

Bn Bn
as ¢ > 0. For the second integral we use the estimate (0.6), and since f
is bounded, the integral is

O(1)ta-nym S exp{—Cle—z['trt-r}de .

The substitution y=¢-1/"(x—z) shows that it is O(1)'™, so that (1.6) is
proved.

We shall need not only the fundamental solution I” but also the cor-
responding fundamental solution I'* of a*(x, D) —0/ot. It is defined by a
relation corresponding to (1.2), but it is convenient to require that it
satisfies the relation

(atr § Pi—t, 2 2) ate, D - 2jo) S0, 20 2 = 116,00,
i S

where z and « appear in the inverse order, as compared to (1.1).

The difference I'*(¢, x, z) —I'(t, «, 2) has no singularities. This follows
from the relation (1.7) below, which is easily proved in the same way
as the corresponding statement for elliptic differential operators. (F.
John [9], Garding [7].)
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Let U be a compact subset of § and let ¥, and V, be open sets such
that UcV,cV,cV,cV,<8.
Further, let y € Co(V,) with y(x)=1for x € V;. Then
(1.7) (¢, z, 2)—-1'(t, x, 2)

dy | It=t,2,9) {040, D) + /o) 1) T*(t, 9, 2) dy
VoV

for all (z,2)e Vyx V.

If we let (, z) € U x U then for the points z, y and z, occurring in this
integral, the values of | —y| and |y —z| are greater than a positive num-
ber. Hence the estimate (1.3), with k= |x|=]|8| =0 gives

i
Q3

(1.8)  I'*(t, x,2)—I(t, @, 2) = O(1)exp{—Ct+}, O0<t<t,,

uniformly on U x U.

2. Estimates of Green’s function. In this section we shall prove the
estimate (0.4) under the assumptions stated in the introduction.
Since the spectral function is hermitian, (0.4) can be written as

G, z, 2)—1'(t, z,2) = O(1) exp{—Ct—+},

where the left side is the kernel of the hermitian form

V. f.g) = (e-*4f, g)— S TGz, 9f ) g@dedzs,  f,geCYS).
SxS

In the following we shall also meet the form

V(t.5,9) = (4.9) =\ I, 2, o) @)@ dads

If the coefficients of @ are constant, then V=7.
We observe that ¥ and ¥ satisfy

(2'1) V(())f’ g) = T/(O,f, g) =0,

which is an immediate consequence of (1.6) and that the formula

0
(2.2) = V(t.f. 9t ) = =V, [, Lg(t, .)

holds if g € Cy(R x 8). In fact, the left side of (2.2) is

16*
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—(e~H4f, Ly(t, ) — Sf{t z,x f(z g(t, x)dxdz —

- S%F(t, 2, x)f(z)mdxdz
Which equals
(4. Lott, ) + \ Tt 2, ) () g M dwdz

in view of (1.4).

We shall deduce the estimate (0.4) from a certain identity involving
the form V. This identity appears below with the number (2.5) and was
proved by Garding [8] when a has constant coefficients. It exhibits the
kernel of ¥ as an expression containing the form ¥ applied to certain
judiciously chosen functions, which we now proceed to present.

Let S, <8 be open, 8; <8 compact, and let & € Cy(S) be equal to 1
on S,. We shall denote the support of 2 by T. Put, for x € S,

b(t, x, 2) = {a(z, D,)+0[ot} (L, x, 2)(1 —h(z)) .

Clearly, b(¢, z, z) is different from zero only when ze 7'—8,. If a, € C,
then b € C(R xS; x8). Let us assume this in the following. Because of
(1.8), b and its derivatives vanish for ¢=0.

Let R+ be the semi-axis ¢ >0, and let w € C(R*). Let ¢, and later on
also ¢’, belong to Cy(S,). Put

mg

by, t, @, 2) = wmdtlﬂ (@)blty—1, 7, 2)da
t
and .
T(p,t, 9, 2) = S w(ty)dt, g o)t —t, x, 2)da .
i S1
We have

(2.3) by, t, @, 2) oo
(a(z, D,) - a/at}S wl(t,) dtISqa(x)F(tl—t, 2, 2)(1—h(2))da
t S

1

(B p(2) — Lf(t, 2)

f@t,2) = h)(y, ¢, ¢, 2)

belongs to C°(R x S) and to CY(S) for fixed ¢ An estimate of Lf will be
given in (2.10) below.
We shall now consider, for ¢>0 and (y, ¥') € §; x Sy,

where
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@(t: Y, y,) = S I7("’2’ b(t_tl’ Y, ')’ b(tl"'tz’ y': '))dtldtz .
t>t>1>0
We also put
(2.4) w(y, ¢, ¢') = S w(t, y, y')et)e(y)@'(y) didydy’
RtxS8x8

and we want to prove the identity

(2.5) \7tt.9 90000 = i, . 0) + Q.
0

where

Q = gdt S (I't, 2, )= I'(t, , 2))p(z) Lf'(t, x)dadz
0 xS
with f'(¢, x)=h(z)'({, t, @', x) .
Suppose that (2.5) is proved. We want an estimate for the kernel of

V(t, @, ¢'). This kernel is the limit of the left side of (2.5) for sequences
Yns Pas and (pn, such that

v, 2 0, walt) ~ 0 for it 4, Stpn(t)dt ~1,
(2.6) @, 20, Puly) >0 for oy Fy, Ssvn(y)dy =1,
2, 20, ¢@,/(4/)>0 for gy’ +7, S%'(y’)dy’ =1.

Hence we have to prove the identity (2.5) and then estimate the right
side of it, uniformly for functions y, ¢ and ¢’ such as those in (2.6).
We change the order of integration in (2.4) and get

&;("P: @, ‘P’) = S I7('52: b(’lp, 1, @, ')’ b(tl—t2’ (P’, )) dtldtz

t1>t2>0

with an obvious notation, and this is, according to (2.3),

[«*] ty
(2.7) (v § Pt 0, b6t 97, )at, - B,
0 0
where
@8) B= { (Lt ), bt ', ) dtadty—
t1>8>0

_ S dt,dt, S Ty, 2, 2) Ly of (t, )6y —tys 97, D) devdz .

11>8>0 Sx8
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If we change the order of integration in the integral of (2.7), we get

(. g, ¢) =\ Plta, 9. 5. ta 97, )ty = R,
0

and hence, again by (2.3),

wy, g, ¢') = \ V(t, ¢, ¢")u(t)dt — R — R’

with
(2.9) R

I

OMS omg

V(¢ @, Lf'(t, .))dt + @ .

Hence (2.5) follows if we can show that the integral in (2.9) vanishes
and that R=0. By virtue of (2.2), the integral of (2.9) is

0

\ 5 V(¢ @, f'(t , ))dt

o/;%

which is equal to zero, since f'(¢, 0) =0 for large values of ¢ and since
7(0, ¢, £'(0, .))=0.

It remains to prove that R=0. Put R=J,—J,, where J, is the first
and J, the second integral of (2.8). We have

Jl = Sdt2 S (e‘tzALlf(tb '), b(tl—tm ‘P': ))dtl )
0 to
and since b(0, ¢, .)=0 and f(¢,, .) =0 for large values of ¢,, integration by

parts gives
oo

dtZS (e—tzAf(tl; '), L2b(t1__t2: (P,’ ))dtl )

ta

which by the arguments that gave (2.2) equals

o33

“Sdtzs é;z‘ (emtzAf(tla ) bty —ty, ¢, ‘))dtl
0 i

S i1

0
—Sdtl S é_t_(e~tzAf(tl’ ')7 b(tl"—t2’ (p” '))dt2
2
0 0

I

(f(tl’ D), bl @ )dtl

I
o3

On the other hand J, is equal to the same integral, since
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SdrSd SF(t2,m 2) Ly f (T 41,5, 2)b(7, @', @) dadz ,
0 o Sx8
(

and this is, by (1.4), equal to

——Sdr\dtzé—t— S L'y, x, 2) f(T+1,, 2)b(7, ¢, x)dadz
0 0 2

X,

dr S ', z,2)f(z, 2)b(z, @', x)dxdz
Sx8

(f(‘[, ‘)9 b(’L’, w’, ))d‘t

ct w33 O @

because of (1.6). Thus R=0.
Now we can turn to the estimates of the right side of (2.5). Let us
begin with @, which is an integral involving the difference

o =1t zx)-1IE 7).
Since I'(¢, z, z) =1'*(t, 2, x) and (x, z) belongs to a compact subset of S x §,
we have the estimate (1.8),
e = O(1) exp{—Ct*},

uniformly in # and z. We shall show that the same estimate is valid for
@, when the functions p, ¢ and ¢’ vary as in (2.6). Let us further restrict
y so that y(¢;)=0 for ¢, = 2¢.

In the formula

(2.10) Lf'(t, @) = h(x)¢'(x)p(t) +

+ 0(1) S dt1SZDx"‘1’(t1—t, v 2)pt)e'(ydy, o] = m-1,
[ Sy
the integral is uniformly convergent for x € T according to (1.3). Hence
we get, using (1.3) and (1.8)

2t
@ = o\ p) exp{-Cr-ar | p()g'@)dudz +
0 SleI
2t 2t

+ 0(1) \ exp{— =} | (¢, —t)-1ra-mmy(ey) ity
b ¢
¢’ (y) p(z) exp{— Clz — y|\+e (t; — ')~} dedydz .
2eT,yeSy, 2681
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Clearly, the first integral is
O(1) exp{—Ct—*}
and the second is easily reduced to
2t 51
o exp {0t} { wityan, | @, —¢)rra-mar.
0 ]
. S exp{—C|z'|\+#(t; — ')~} dx’ S p'(x—a')dx
Rn Rn
which equals

2t 1
0(1) exp {— Ct+) S (b)) dt, S (t,—t')-1Hmdy’ — O(1) exp {— Ot—+} .

0 0
Hence the identity (2.5) shows that
G(t: Y, y,) "F(t: ylr y)
= w(t,y,y’) + O(1) exp{—Ct~+}

= S V(t2> b(t_tlz Y, ')7 b(tl_t2’ y’7 ‘))dtldtZ + 0(1) exp{—C’t‘”} s
t>t1>t>0

uniformly on 8, x §;.
But this last integral can be estimated in a way similar to that in [8],
and, like there, we find it to be

0(1) exp{—Ct~+#} .
Thus the estimate (0.4) is valid, uniformly on compact subsets of § x §.
3. The Tauberian argument. In this section we shall complete the

proofs of our theorems. Let € be the closed unit circle in the complex
plane and put
o(d) = e(d, z, ) + 2Re7’e(}~, z,y) + h’lze(}': YY)
and 0A) = elh 2, 21+ p1?) + 2Reye,(h @, 1)
for y € ¥. In order to prove Theorem 1, we observe that to every com-
pact subset " <% x 8 xS, there is a constant K such that
Kanim — g,(A)

is a non-decreasing function of A when A=0 and (y, z, y) € #". (See [8].)
Since o(4) is non-decreasing, then certainly

a(d) — o,(d) + KAn/im
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is non-decreasing. Now (0.7) gives
Se‘“d(a(l)—aw(l)) — o™y, 0 <t <y,

and so a Tauberian theorem of Karamata (see [12, p. 197]) gives
a(A)—a (d) = o(A"™), A—> +oo.

This is valid uniformly for all y € €, so that Theorem 1 follows.
For the proof of Theorem 2, we write the estimate (0.5) as

S e1d(0,(3) — 0y(2) = O(1) exp{—Ci=} .

This estimate is uniform for (y, z, ) € #". In order to apply a Tauberian
theorem of Ganelius [6], we estimate

A; = oA+ 2M0+) — g (A), O<e=1.
Now Theorem 1 and an estimate of e (4, «, y) show that

ay(4) = O@rm)
uniformly on . Thus

A; £ 04(22) = 0(A"™) = O(*/119)
with x=n/m + ¢/(1+¢). We have to take

e=u=1/(m-1),
and so v = (ns 1),
and the corollary of [6] gives
I*(ay(3) — 03(3)) = O(1)Awm+t-kom,

so that Theorem 2 follows.
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