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ON DIRECT DECOMPOSITIONS
OF TORSIONFREE ABELIAN GROUPS

BJARNI JONSSON

In Kuro§ [9] the question is raised whether the decomposition of a
group into a direct product of finitely many indecomposable factors,
when such a decomposition exists, is always essentially unique; that is,
whether two such decompositions of the same group always have an
equal number of factors which can be paired in such a way that corre-
sponding factors are isomorphic. The solution to this problem is nega-
tive; in fact, in Jonsson [4] a torsionfree abelian group of finite rank is
constructed, which has two essentially different decompositions into
indecomposable factors.! Another counter-example is given in Kuros [6],
the group constructed there is finitely generated but not abelian.

The example in Jénsson [4], which is studied in greater detail in Sec-
tion 1 of this note, also shows that the direct product of two torsionfree
abelian groups of finite rank may have a factor of rank one although
neither group has such a factor. This is particularly interesting in view
of the result in Baer [1, p. 77] which states that if a group @ is the direct
product of finitely many torsionfree groups of rank one, then every
factor of G also has this property.

In Section 2 it is shown by means of an example that the cancellation
law, which is known to hold for cyclic factors (Walker [11]2), cannot be
extended to generalized cyclic factors. Section 3 contains an example of
a torsionfree abelian group @ of finite rank, having two decompositions
G=A x B=C x D such that 4 and B are isomorphic to each other, and
C and D are isomorphic to each other, but 4 and B are not isomorphic
to C and D. In terms of isomorphism types this means that the type of
G has at least two distinet square roots.

Received September 1, 1957.

1 Tt is claimed in Kuro§ [7, p. 205] (see also Kuro$ [8, p. 215]) that this example is in-
correct, but no reason is given for this assertion. Neither the author nor others who
have checked the details have been able to find an error.

2 The fact that the cancellation law holds for finite factor was proved in Jénsson—
Tarski [5], not only for groups, but for arbitrary algebraic systems with a zero element.
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In connection with this last example we observe that the uniqueness
question for square roots of isomorphism types was investigated in Hanf
[2], Tarski [10] and Jo6nsson [3], and that the answer was shown there to
be negative for various classes of algebras. However, an essential feature
of the counterexamples constructed there is the fact that they are cen-
terless, and the methods used in these papers are therefore not applic-
able to abelian groups.

1. The unique decomposition problem. Consider a four dimensional
vector space V over the field of rational numbers, let {z, y, z, u} be a
basis for V, and let

2 =3x—y and ¢y =2x-y.
Then {2, y', 2, u} is also a basis for V,
x=u -y and y=22"-3y".

Let 4, B, C and D consist of all those elements of ¥ which can be written
in the forms
a b ¢

d
g 5—ny+%z+mu+%e(y+z)+%f(y+u),

e , ¢ , b , d ,
i +%z+%e(x ~2) and Y +mu+%f(y —u),
respectively, with a, b, ¢, d, e, f and » being integers.

It is easy to see that A, B, C' and D are subgroups of V under vector
addition. Since 4 is contained in the vector space spanned by {z} while
B is contained in the vector space spanned by {y, z, u}, we see that 4
and B have only the zero vector 0 in common, so that their direct pro-
duct 4 x B exists and is a subgroup of V. For similar reasons ¢'x D
exists and is a subgroup of V.

In order to show that 4 x B=C xD we observe that if n is any in-
teger, then the elements

1 1, 1 1 2 3 1 1

TR TR BT mY we mt

2,

belong to C x D. Since the elements
Hy+e) =2’y —§a'—2), Hy+uw =2-y -3y -

also belong to O x D, we infer that 4 x B C xD. On the other hand,
the elements
15¢
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1, 3 1 1, 2 1 1 1
— —u
5n 117

P

2,

V=5""pY m
belong to 4 x B for any integer n, and the elements

@' —2) = 2—3(y+2), Iy'—u) =2-Hy+u)
also belong to 4 xB, whence it follows that CxD<=Ad x B. Thus
AxB=CxD.
The group A4 is of rank one and is therefore indecomposable. Suppose
C=C"x(C". Then there exist homomorphisms ¢ and y which map C
onto C’ and C”, respectively, in such a way that

p()+yw) =v forevery wveC,
p(v) =» and o) =0 forevery veC',
p(v) =0 and wy) =v forevery wve(C".

Observe that ¢ preserves rational multiples; that is, if v C and r is a
rational number such that rveC, then re(v)eC’ and p(rv)=re©®).
Since the only elements ve C with the property that (1/57)v € C' for
every integer p are the elements of the form (a/57)x’, we infer that
@(x")=(a/5™)z" for some integers @ and n. For similar reasons y(z')=
(b/5™)x' where b and m are integers. Hence yg(z')=(ab/5t™)2’. But
po(v)=0 for every v e C, so that a=0 or b=0. We may assume that
b=0, in which case y(z’)=0 and ¢(z')=a'. In exactly the same way we
see that ¢(2)=0 or y(2)=0. If ¢(2)=0, then

p(3(2' ~2)) = p@) - Ip(z) = ',

which is impossible because 4z’ ¢ C. We must therefore have y(z)=0.
Since every element of C is a linear combination of 2’ and z with rational
coefficients, it follows that y(v)=0 for every v € C. We therefore con-
clude that C''={0} and C’'=C. Thus C is indecomposable.

A similar argument shows that D is indecomposable. It can also be
shown that B is indecomposable, but for our present purpose this is not
needed. For even if B were decomposable, the resulting decomposition
of A x B would still contain the factor A of rank one, and since 4 x B is
also the direct product of the two indecomposable groups C and D of
rank two, it follows that 4 x B does not have the unique factorization

property.

2. The cancellation law. Let V be a three dimensional vector space
over the field of rational numbers, let {z, y, z} be a basis for V, and let

' =8+3y and y =5bxr+2y.
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Then {', y’, 2} is also a basis for V,
x=2¢"-3y’ and y= —b5x'+8y" .

Let P and @ be two infinite disjoint sets of positive prime integers,
neither of which contains the prime 5, let B be the set of all positive,
squarefree integers all of whose prime factors belong to P, and let § be
the set of all positive squarefree integers all of whose prime factors
belong to ). Let 4, B, C and D consist of all those elements of V which
can be written in the forms

a b ¢ d
-x,  —y+-z2+=-(y+z),
r 7 8 5

b c d
-z, and -y +-2z+-3y +2),
r r s 5
respectively, where a, b, ¢ and d are integers, r € R and s € 8. As before
we see that 4, B, C and D are subgroups of ¥V and that the direct pro-
ducts 4 x B and C x D exist. It is also clear that
1 1 1 1 1

1
-z, —y,—-2 € OxD and ~x',~y,-2z € AxB
r r s r rY s

for every r € R and s € §. Furthermore
ty+2) = —2'+y' +1(By’ +2) € OxD,
3y +2) = 3x+y+3(y+z) € AxB,

and we infer that 4 x B=C xD. Observing that 4 and C are isomor-
phic, we shall prove that B and D are not isomorphic.

Suppose there does exist a function ¢ which maps B isomorphically
onto D. Observe that y and —y are the only elements v € B with the
property that, for every positive integer r, (1/r)v € B if and only if r € R.
Similarly 4’ and —¥’ are the only elements » € D with the property that,
for every positive integer 7, (1/r)v € D if and only if r € R. It follows that
¢(y)= +9', and exactly the same kind of reasoning shows that ¢(z)= +z.
Consequently

p(y+2) = o) +ipz) = 24y £2),

which is impossible because #(y'+z)¢ D. We therefore conclude
that no such isomorphism ¢ exists.

3. The square root problem. Let V be a four dimensional vector space
over the field of rational numbers, let {z, y, z, u} be a basis for V, and let
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z = 2x+z, Yy = y+ 3u, 2 = 172+ 9z, w = y+2u.
Then {&', y’, 2’, u'} is also a basis for V and
x =9z —2, y = 2y’ + 3u’, 2= —172" + 22, =y —u.

Define the sets P, ¢, R and § as in the preceeding example, and let
A, B, C and D consist of all those elements of ¥V which can be written
in the forms

a b c a b c
—z+-y+=(x+y), —z+-ut+-(2+u),
7 8 5 r 8 5

a ’ b ! c ’ ’ a’ ’ b ’ C ’ 7
-2 +-y' +—(2'+2y) and -2 +-u'+=(2"+2u'),
r s 5 r 8 5

respectively, where @, b and ¢ are integers, » € R and se§. Clearly
4, B, C and D are subgroups of V and the direct products 4 x B and
O x D exist and are subgroups of V. Furthermore, 4 and B are iso-
morphic to each other, and so are C and D. Since

1 1 1 1 1, 1,1, 1

-z, -y, —2, —u € CxD and -, —y', -2', —u' € AxB
s v s 7 s r S

for every r € R and s €8, and since

He+y) = 20" +uw' — (' +2¢")—3(z+2u') e Ox D,
Yz+u) = —3"+y —uw — (@ +2y')+ 3(z' +2u') € OCx D,
$e' +2y) = ut+ge+y)+iz+u) € AxB,
32 +2u') = Bz+2+E(x+y)+4e+u) € AxB,

we see that A x B=C x D. Finally, in order to show that B and D are
not isomorphic we reason as in the second example: If ¢ is a function
which maps B isomorphically onto D, then ¢(z)= £z’ and ¢(u)= +u'.

Hence ¢(§(z+u)) = 13+,

which is impossible because 3(z'+u’) ¢ D. Thus A and B are not iso-
morphic to C and D.
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