MATH. SCAND. 5 (1957), 224229

ON ISOMORPHISM TYPES OF GROUPS
AND OTHER ALGEBRAIC SYSTEMS

BJARNI JONSSON

In this note we shall use the results of Hanf [1] on Boolean algebras
to obtain analogous results for groups.! Our method is similar to that
used in Tarski [5] and, as we shall see later, this same method can be
applied to arbitrary classes K of algebraic systems satisfying certain
conditions of a very general nature.

While Hanf and Tarski work exclusively with outer direct products, it
will be advantageous here to use inner direct products, and in this
connection it is convenient not to distinguish between an algebraic
system and the set of all its elements. With this exception, our notation
and terminology will be the same as in the two papers referred to above.

Given a group H, we denote by &(H) the set of all (direct) factors of
H. It is known that if H is centerless, then F(H) is a Boolean algebra
whose inclusion relation and multiplication coincide with the set-theoretic
inclusion and multiplication respectively. The Boolean sum of two
factors H' and H'' of H is simply the subgroup which they generate.
In particular, if H' and H'' have only the identity element of H in com-
mon, then the direct product H’ x H'' exists and is equal to the Boolean
sum of H' and H".

Our central result is the following.

TaEOoREM 1. If A is an infinite Boolean algebra and G is a finite or
denumerable indecomposable centerless group, then there exist a group H
and a function F with the following properties:

(i) H is centerless.

(ii) F maps A isomorphically onto F(H).

(iii) For every a, be 4, F(a)=F(b) if and only if Ala]x= A[b].

(iv) For every atom a of 4, F(a)~@Q.

(v) The cardinal of H equals the cardinal of A.

Proor. Let @ be a function which maps 4 isomorphically onto the
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1 The results contained in this note were first stated in [2].
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set-field A consisting of all the open and closed subsets of a compact
zero dimensional Hausdorff space 8. With the usual definitions of the
operations involved, the set GS of all functions on S to G is a group, the
product f-g of two functions f, g € G5, and the inverse f~1 of f are de-
fined by the formulas

(S 9p) =f(p)glp) and fp) = f(p)?

for every p €S, and the identity element of GS is the function e such
that e(p)=e¢ for every p € 8, where ¢ is the identity element of G.

For each fe G® and « € G, let T(f, «) be the set of all p e § such that
f(p)=«. We then define H to be the set of all f € G such that T'(f, x) € A
for every « € @, and for each a € 4 we let F(a) be the set of all fe H
such that f(p)=e¢ for every p € @(a).

Clearly e € H, and since

T(f &) = T(f, &)

for every f € G° and « € @, we see that f~1 € H whenever fe€ H. Observe
that for fixed f € H the sets 7'(f, «) are pairwise disjoint open sets which
cover 8. By the compactness of S it follows that 7'(f, )= for all but
finitely many elements « € G. In other words, each function f e H takes
on only finitely many distinct values. Inasmuch as

T(f-g,a) = H (T(f. B)n T(g, p1x))

for every f, g € G5 and « € G, we infer that f-g € H whenever f, ge H.
Thus H is a subgroup of GS.
For every o € G, let & be the function on § such that

&(p) =«  forevery pef.

Clearly & € H. Consequently H is a subdirect power of G, and from this
it follows that H is centerless. For the correspondence f — f(p) maps H
homomorphically onto @ and therefore maps the center of H into the cen-
ter of G. Since @ is centerless, this implies that H is centerless.

If a € 4, then F(a) is clearly a subgroup of H. Suppose f e F(a)nF(a).
Since @(a) uP(d@)=4S, we have for each p € § either p € @(a) or p € D(a),
and in either case it follows that f(p)=e¢. Thus F(a) and F(@) have only
the identity element of H in common. Next suppose fe F(a) and
g e F(a@). Again, for each pe 8, either p € @(a) or p € D(d), whence it
follows that either g(p)=¢ or f(p)=e. We therefore see that f-g=g-f.
Thus the direct product F(a)x F(i) exists and is a subgroup of H.
Now consider any h € H. So define f, g € GS that
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JS(@) = k(p) and g(p)=c¢ for every pe P(a),
J(p) = ¢ and g(p) = h(p) for every pe ®(@a).

Inasmuch as

T(f,) = T(h,0) N D(a) whenever ¢ + xe @,
T(f, &) = T(h, €) U D(a),

we see that fe H and, in fact, f € F(2). Similarly g € F(@). Furthermore,
f(p)-9(p)=h(p) for every p e S, so that f-g=h. This proves that

(1) H = F@a)xF(a) forevery aecd.

In particular we have shown that F does in fact map A4 into the Boolean
algebra &(H).

For any a, b€ A, if a<b, then ®(b)<P(@) and therefore F(a)< F(b).
Conversely, assume that F(a)<F(b). Choose an element « € G with
a%¢, and let f be the function on S such that, for every p € S,

f =« it ped@, fp)=¢ i pecd@.

Then fe F(a) and hence fe F(b), but this implies that ®(b)<P(a),
D(a)=P(b), a<b. Thus we have shown that, for every a, be A4,

(2) F(a) < F(b) fandonlyif a<b.

In order to complete the proof of (ii) it is sufficient to show that
F maps A onto F(H). More specifically, we are going to prove that if

(3) H=H xH'",
then there exists a € A such that
(4) H' = F(a) and H" = F(a).

Assuming that (3) holds, consider a fixed p € S. Let G' be the set of
all &’ € G such that &'=f'(p) for some f' € H’, and let @'’ be the set of
all «'” € @ such that «'’ =f"(p) for some f'“ € H''. Clearly @ and G''
are subgroups of G, and every element of @’ commutes with every ele-
ment of @’’. Given x € @, we have & =f"-f"' for some f’ € H and f'" e H".
Consequently o« =«'-o'" where «'=f'(p) € @' and &' =f"(p) € @"’. Thus
G'-@"=@. Since every element of G'nG"’ commutes with both the ele-
ments of G’ and the elements of G”, it follows that G’ and G’ have only
the element ¢ in common and that, therefore, G=G' x@"’. Since @ is
indecomposable, we infer that either G’ or G'’ consists of the identity
element alone. We have therefore shown that, for every p € S,
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5 either f'(p)=¢ forevery f' eH’
( orelse f(p)=¢ forevery f'eH".

Let U’ be the set of all p e S for which the second alternative in (5)
holds, and let /" be the set of all p € S for which the first alternative
holds. Choose « € G with o&e. Then g&=f'-f" for some f'e H' and
f"eH"”, and it readily follows that T'(f’, x)=U" and T(f", «)=U"".
Thus, U’, U €U, and there exists a € 4 such that U'=®(a) and
U"=®(a@). By (5) and the definitions of U’ and U" it follows that

H' < F(a) and H"” < F(a),

and we conclude with the aid of (1) and (3) that (4) must hold. This
completes the proof of (ii).

Suppose a, be A, and assume that F(a) and F(b) are isomorphic.
Then the Boolean algebras &(F(a)) and F(F(B)) are clearly isomorphic.
But F maps A[a] isomorphically onto F(F(a)) and maps A[b] isomor-
phically onto %(F(b)). Hence A[a] and A[b] are isomorphic.

Conversely, assume that A4[a] and A[b] are isomorphic. Then there
exists a function ¢ which maps @(a) homeomorphically onto @(b). Let
y be the inverse of ¢, and for every f e F(a) and g € F(b) let f¢ and g° be
the functions on 8 such that, for every pe S,

) =flylp) i ped®), fip)=¢ i pedd).

g°(p) = g(plp)) if pedla) g =c if ped@).
If fe F(a) and e+a € G, then T(f?, x) is the set of all p e S such that
w(p) € T(f, «). Since ¢ maps open and closed subsets of @(a) onto open
and closed subsets of @(b), it follows that f¢e F(b) for every fe F(a).
Similarly ¢° € F(a) for every g€ F(b). Since, clearly, f®=f for every
f€ F(a) and g°=g for every g € F(b), we see that the correlation f — f¢
is a one-to-one mapping of F(a) onto F(b). Furthermore, given f;,
Jf» € F(a), we have for any p € @(a),

(fi-fo)(p) = (1 fz)('P(P)) = fl('l’(P)) 'fz('l’(p))
= f1°(p) - f:2p) = (11*-F0)(P),
while for p € ®(a),

(f1-fa)*(p) = & = f1%(p)f:°(p) = (L2F:)(D) -
Consequently,
(firfo)? = f1fs? forevery [fi,f€F(a),

and F(z) and F(b) are isomorphic. This completes the proof of (iii).
If ¢ is an atom of 4, then ®(a) consists of a single isolated point
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p of S, and F(a) consists of all fe G5 such that f(q9)=¢ whenever
p+q e S. This proves (iv).

Finally we prove (v). Consider a fixed element x € @ with x+¢, and
for each a € 4 let f, be the function on § such that f,(p)=« for every
p € D(a) and f,(p)=¢ for every p € ®(a). Clearly f, € H for every a € 4,
and since the correspondence a — f, is one-to-one, it follows that the
cardinal of H is at least equal to the cardinal of A.

Each function fe H takes on only a finite number of values

Kgy Oy <o o5 0, €EG

and f is completely determined by the elements x; and the elements
a;€ A such that T'(f, ;)=®(a;). Since there is at most a countable
number of sequences o, &y, ..., &, € ¢, and since the number of se-
quences a@,, &, ..., &, € 4 is equal to the cardinal of 4, we see that the
cardinal of H does not exceed the cardinal of 4. Therefore (v) holds,

and the proof of the theorem is complete.

With the aid of Theorem 1 we are able to obtain from Hanf’s results
on Boolean algebras analogous results for groups:

THEOREM 2. Theorems 1, 2, 4 and 5 of Hanf [1] remain valid if Boolean
algebras are replaced in them throughout by cenierless groups and if, in
addition, the two-element Boolean algebra T in Theorem 4 is replaced by an
indecomposable centerless group.

We shall now indicate briefly how Theorem 1, and hence also Theorem
2, can be generalized by considering, in the place of groups, certain other
algebraic systems with a zero element 0. For the definitions of this and
other concepts used below we refer the reader to Jonsson-Tarski [3] and
Tarski [4]. As is shown in [4], the factor algebra §(H) of a centerless
algebra H is a Boolean algebra, and H therefore has the (strict) refine-
ment property.

THEOREM 3. If G s a finite or denumerable indecomposable centerless
algebra with a zero element and with operations of finite rank, and if A
18 an infinite Boolean algebra, then there exist a subdirect power H of G
and a function F which satisfy the conditions (i)—(v) of Theorem 1.

OuTLINE OF ProoF. Let @, A and S be as in the proof of Theorem 1,
and define 7'(f, «), H and F in exactly the same way as was done there
(with O replacing ¢). It is easy to see that H is a subdirect power of ¢
and is therefore centerless, and the proofs of the formulas (1) and (2) go
through with only some minor changes.
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Now suppose (3) holds, consider a fixed p € S, and define G’ and G’
as before. The proof that G=G"xG" easily reduces to showing that
each x € G has at most one representation o =o'+« with &’ € @ and
«” € G’. Assume that also a=p"+p" with '€ G’ and g’ € @”. Then
there exist f', g’ e H" and f"', ¢’ € H'' such that

o =f(p), o« =f"(p), B =g, B =g"0.
The intersection of the sets T'(f', '), T(f", "), T(g’, ') and T(g", B”)
is a non-empty set belonging to U, and is therefore of the form @(a) with
O+ac 4. Since H has the strict refinement property,

Fla) = (F(a)n H')x(F(a)n H").

Let = be the projection of H onto F(a) corresponding to the factorization
(1). Then = maps H' onto F(a)nH’ and maps H" onto F(a)nH''. Since

a(f')+a(f") = alg’)+=(g")
it follows that a(f')=n(9’) and =(f")==n(¢g"”). Evaluating these func-
tions at p we conclude that o’=p" and &' =g". Therefore G=G' x G",
and either G or G'" must consist of 0 alone. We thus see that (5) holds
for every p € §, and we can now reason as before to show that (4) holds
for some a € A, thereby completing the proof of (ii). The proofs of
(iii)—(v) require only trivial changes in the more general situation.

Theorem 3 clearly enables us to transfer most of Hanf’s results for
Boolean algebras to any class K of algebras with a zero element and
with finitary operations, which contains a finite or denumerable inde-
composable centerless algebra, and which is closed under the operation
of taking subdirect products. Among such classes are the class of all
groups, the class of all commutative partially ordered semigroups (cf.
Tarski [5]), and the class of all rings, as well as various subclasses of
these classes.
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