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ON SOME FUNDAMENTAL PROBLEMS CONCERNING
ISOMORPHISM OF BOOLEAN ALGEBRAS

WILLIAM HANF

The main notions which will be discussed in this note are those of
direct product and isomorphism.! The direct product of two algebraic
systems U and B will be denoted as usual by A x B; instead of A x ... x A
(with » factors) we shall write A?. The fact that two algebraic systems
A and B are, or are not, isomorphic will be expressed by the formula
N~9B, or Anon-~ B, respectively.

Until recently, various fundamental problems concerning isomorphism
of direct products of algebraic systems remained unsolved. Thus, for
instance, for various familiar classes K of algebraic systems, such as
Boolean algebras and groups, the following problems were open:

Problem I. Does A~ A x B x € imply A=A x B for arbitrary systems
A, B, € in K? Or, in an equivalent formulation: If each of two systems
of K is isomorphic to a direct factor of the other, does it follow that the
two systems are isomorphic?

Problem II. Does A2 B2 imply A~ B for any A and B in K??

A. Tarski suggested the following related problem:

Problem ITI. Does A~ A x B x B imply A~Ax B for any A and B
in K?

Obviously, if Problem III is solved negatively, then so is Problem I.
Tarski noticed that such a solution of Problem III also leads to a nega-
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1 The results in this note were first stated in abstracts [1], [2], and [14]. Grateful
acknowledgement is made to Professor Anne C. Davis and Professor Alfred Tarski for
encouragement and assistance in the preparation of this paper. A large part of the work
on this paper was done when the author was engaged in a research project (in the Uni-
versity of California, Berkeley) on the foundations of mathematics directed by Professor
Tarski and sponsored by the National Science Foundation.

2 For Boolean algebras, Problem I was stated by Sikorski [8, p. 242]; Problems I
and IT were stated independently and about the same time by Tarski [10, p. 100]. In the
appendix to [11], pp. 3111., these two problems are discussed for arbitrary algebraic systems
and it is emphasized there that they are open for both Boolean algebras and groups.
In Kaplanski [5], Problems I and II are listed among the three test problems on the
structure of Abelian groups.
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tive solution of Problem II. He also pointed out that it would be espe-
cially interesting to solve Problem III taking for ¥ either a finite system,
if possible a two element system (Problem III’), or else the system 9
itself (Problem III").

Problems I and II (and hence also I1I) have been solved affirmatively
only for rather special classes of algebraic systems. Thus for complete
and atomistic Boolean algebras, Problems I and II reduce to some
general set-theoretical problems whose solution has been known for a
long time; the solution of Problem I is provided by the well-known
Cantor-Bernstein theorem. More generally, these two problems have
been solved affirmatively for countably complete Boolean algebras.!

For arbitrary Boolean algebras and, in fact, for denumerable Boolean
algebras, a negative solution of Problem I was obtained a few years ago
by 8. Kinoshita (see [6]). Tarski suggested that it might be possible to
modify Kinoshita’s construction to obtain also a negative solution to
Problem III. This indeed turned out to be the case and the result is
stated in Theorem 1 below; the resulting negative solution of Problem IT
is contained in Theorem 2. R. L. Vaught has shown that the solution of
Problem IIT’ for A a denumerable Boolean algebra is affirmative; we
reproduce this result in Theorem 3. Problem III” for denumerable
Boolean algebras still remains open. On the other hand, for the class
of all Boolean algebras, the solution of both Problems IIT" and III" is
negative and will be given here in Theorems 4 and 5. The Boolean
algebra YU involved in these counterexamples is of the power of the
continuum. The constructions used in Theorems 1, 4, and 5 can be
applied to the solution of several other related problems. Some of these
applications are mentioned in remarks following Theorem 5. One of
them, due to C. C. Chang, is stated explicitely in Theorem 6; by this
theorem, there are two partially ordered systems % and B and a finite
partially ordered system € such that U x € B x € but Anon-~B.2 The
articles Tarski [13] and Jénsson [4] immediately following this note are
closely related to it in content. In [13] it is indicated how Theorems
1, 2, 4, and 5 can be used to obtain analogous results for commutative
semi-groups. In [4] these theorems are applied to solve Problems I-III

1 A solution of Problem I for countably complete Boolean algebras can be found in
[8], [10], and in [11]; [10] and [11] contain also a solution of Problem II for the same
class of algebras. (In [11] see pp. 215f, in particular Theorem 15.27.) Concerning the
affirmative solution of these problems for other classes of algebras see remarks in [11,
pp. 311£.].

2 The results of R. L. Vaught and C. C. Chang mentioned above are published here
for the first time (naturally, with the permission of the authors).
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negatively for (non-Abelian) groups; [4] also contains some general
formulations which comprehend the results for Boolean algebras, com-
mutative semi-groups, and groups as particular cases. Finally we should
like to mention that the article J6nsson [3] contains the negative solu-
tion of Problem II for Abelian groups.

The proofs of Theorems 1 and 3 which follow make essential use of
the notion of a Boolean algebra with ordered basis.®! We distinguish
between a Boolean algebra 9B and the set B of its elements although we
often speak of an element of B when we mean an element of B. A subset
A of B will be said to form an ordered basis of the Boolean algebra B
if (i) A contains the zero but not the unit element of B, (ii) 4 generates
B, that is, every element of B is a finite union of finite intersections of
elements of 4 and their complements, and (iii) 4 is simply ordered by
the inclusion relation of 8. Let I' be the set of all order types « of the
form 1+, that is, « is the type of a simply ordering relation which has
a first element. It is well known that every denumerable Boolean alge-
bra has an ordered basis; this easily follows, for instance, from the topo-
logical representation of Boolean algebras to which we shall refer below.
Furthermore, given an order type « € I', there exists a Boolean algebra
B having an ordered basis of type « (and %8 will be denumerable just in
case « is). In fact, we can construct B as follows: Let A be a set which
is of order type « under a relation <. Let B be the set of all subsets of
A which are finite unions of intervals [a, b) of 4 (by [a, b) we mean the
set of all € 4 such that e <x <b). Clearly B forms a Boolean algebra
under the usual set-theoretical operations. Furthermore, since x e I,
A has a first element a, and the set of all intervals [a4, b) forms an or-
dered basis of type « for 8.

It is easily seen that, although any two Boolean algebras with ordered
bases of the same type are isomorphic, a Boolean algebra may have
ordered bases of unequal order type. We shall write x ~§ if some Boolean
algebra has both an ordered basis of type « and one of type . If Boolean
algebras U and B have ordered bases of type « and g respectively, then
the direct product % x B has an ordered basis of type «+f. From this
we see that, for each «, fe I, x+f~f+«. We will also make use of
the formula

1 A discussion of Boolean algebras with ordered bases is given in Mostowski-Tarski [7]
although the notation and terminology of that paper are not followed in detail here. Most:
of the observations concerning Boolean algebras with ordered bases which are made in
this and the next paragraph originate with Mostowski and Tarski even if they are not
included in [7].
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Do, +6x3 B, + 6

new new

which holds whenever «,, 8, € I' and «, a8, for each n € w, and § is an
arbitrary order type. This statement can be proved by exhibiting the
natural isomorphism which exists between the two Boolean algebras
involved.

If U is a Boolean algebra and a is one of its elements, we will denote
by UAa] the Boolean algebra formed by the principal ideal generated
by a, that is, the Boolean algebra formed by the set of all elements of U
which are included in @ and having the same operations as U except
that complementation is taken relative to a. Throughout the following
discussion, o will denote the set of natural numbers as well as the order
type of the natural numbers under <. The order type of the rational
numbers under < will be denoted by 7.

THEOREM 1. There exist denumerable Boolean algebras W and B such
that A A x B? but Anon-=Ax B. More generally, given a positive in-
teger n, there exist denumerable Boolean algebras W and B such that, for
each positive integer m, ™A™ x B* just in case k is a multiple of n.

Proor.! Suppose n is given. We set

=0+, 0= 0np  Ti=2 (eyn),
Jeo Jjew
for each i € w. Let %A be a Boolean algebra with ordered basis of type «
where
& = Tp°0® +,2 (044172 + Ty11)
€W
and let B be a Boolean algebra with ordered basis of type a,.

To show ™~ U™ x B* whenever k is a multiple of =, it will clearly
suffice to show that A~ A x B™. Since wit!=1+ o+, all the order types
defined above are elements of I. Furthermore z;=g;-n+7,,,; and
0;,=0;+0;,;. Thus we have

Tyt O’ = QN Ty + Oyt
A (0t 0541 + Ty
=0;n + Tin
and hence

1 The proof of Theorem 1 was originally formulated in topological terms as was the
proof of the analogous result of Kinoshita. It was later transposed (at the suggestion of
Tarski) into an algebraic form using essentially the notion of an ordered basis. This has

resulted in a considerable simplification of the fundamental construction but has involved
some complications in other parts of the proof.
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Z (T3 +0441°m) wZ' (03 m+734q) -

iew i€w
Making use of the general associative law, it follows from this that
x =70 + 3 (0441 n+T4)
1€
= (To+ T @) + 2 (0411 n+Tip1)

1€W®

A Tp o + ["o +2 (0i+1"”'+7i+1)}

)
= 10 + 2 (1 +0;,,°0)
1€

N T+ Y (0t Ti)

i€

T w + [0'0'” +2(Ti+1+°'i+1'n)]

tew
N T o + 3 (0541 0+ Tiyy) + 0p m

tew

=« + op'n.

Thus A and A x B* have ordered bases of equivalent types and so are
isomorphic.

It remains now to show that if ™= Y™ x B*, then k is a multiple of ».
Suppose ™~ Y™ x B¥. Let € be a Boolean algebra constructed from an
ordered set of type «-m+ 0y & by the method described in the remarks
preceeding this theorem; € is thus isomorphic to U™ x B*. By the type
of an interval of € we mean its type under the relation < of the ordered
set. By a maximal interval of a given type we mean an interval which
is not properly included in any interval of the same type; € clearly has
maximal intervals of type g;, 0;, 7;, «, etc., as well as intervals of type
w, 1, @;, ete., which are not maximal. Let a be the maximal interval of
type «+m. UA™ is then isomorphic to €[a]. Let F be a function mapping
€[a] isomorphically onto €.

First we notice that for any element = of the Boolean algebra €, either
(i) for some 7 € w, an interval of type g, is included in z or (ii) for some
elements y and z of €, x=yuz and the algebra €[y] is atomistic while
€[z] is atomless. This follows from the fact that every interval of €
satisfies (i) or (ii) and every element of € is a finite union of intervals.
Thus we see that given an interval « of type g; in €[a], the element F(x)
must contain an interval of type p, for some ¢ € w; for if it did not, then
F(x) and hence  would satisfy (ii) which is impossible since if x =yuz for
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some y and z of €, then either y or z contains in turn an interval of type
¢;- We wish now to show that ¢ must equal j, that is, that the image
under F of an interval of type g; must contain an interval of the same
type.

By the derivative of a Boolean algebra we mean its quotient algebra
modulo the ideal of all finite sums of atoms, that is, the algebra formed
by identifying elements which differ by a finite sum of atoms. The
derivative of a Boolean algebra with ordered basis of type w?+!+4 has
an ordered basis of type wi+#. Thus if we take j+ 1 successive deriva-
tives of G[x] (where z is an interval of type p;), we obtain a Boolean
algebra with ordered basis of type 1+#, that is, an atomless Boolean
algebra. Therefore the (j+ 1)st derivative of €[F(z)] must also be atom-
less and so G[F(x)] cannot contain any interval of type g; for any 7> j.
Thus ¢ <j. By considering the function F'-! mapping € isomorphically
onto Efa], we obtain j<i. Hence we obtain the desired conclusion
that j=q.

Let b be the element of € which is the union of the m maximal intervals
of type 7,-w. Let p; be the number of maximal intervals = of type p,
included in b and such that F(x) contains an interval of type g, which
is disjoint from b. Similarly, let ¢, be the number of maximal intervals
x of type p; which are disjoint from b but are such that F(x) contains
an interval of type g; included in &. Now there are 2ni maximal inter-
vals of type g, in the algebra €[a] which are disjoint from b. Thus there
are 2nt —q, maximal intervals x of type g; which are disjoint from b and
are such that F(x) contains an interval of type g, which is disjoint
from 6. For each maximal interval y of type g, in €, there can be only
one maximal interval z of type g; in €[a] such that F(x) contains an
interval of type g, included in y. Therefore the number, 2ni —g;+ p;, of
maximal intervals x of type g, for which F(x) contains an interval of type
o; disjoint from & must equal 2n%+k, the total number of maximal
intervals of type g, which are disjoint from 6. Thus p;=q;+k for each
1€ o.

Let » be the intersection of & with the complement of the inverse
image of b under F'; that is,

w=>bnF).

It is easy to see that p, is the number of maximal intervals of type o,
which contain an interval of type @; included in w. Now w is the finite
union of intervals v each of which is included in b and hence has the
property that there are at most two natural numbers ¢ (corresponding
to the two endpoints) such that the number of maximal intervals of
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type g¢; which contain an interval of type g, included in v is not a mul-
tiple of n. From this we conclude that there are only finitely many
7 € w such that p; is not a multiple of ». Applying a similar argument
to the element 6N F(b) we obtain that there are only finitely many ¢ € w
such that ¢, is not a multiple of ». Therefore, for some ¢ € w, both p,
and ¢; are multiples of n. Hence we obtain the desired conclusion that

k=p;—q; is a multiple of n, which completes the proof of Theorem 1.

TreEoREM 2 (A. Tarski). There exist denumerable Boolean algebras A
and € such that N2>~ E2 but Anon-~E. More generally, given a positive
integer n, there exist demumerable Boolean algebras U and € such that for
every positive integer k, ¢ ~ €% in case k is a multiple of n, and Ar¥non-~ E*
otherwise.

Proor. This is an immediate consequence of Theorem 1 obtained by
letting €~ A x B (and by taking m=~£ in the second part of that theo-
rem).

TrrEorEM 3 (R. L. Vaught). Let A be a denumerable Boolean algebra
or, more generally, a Boolean algebra with ordered basis.

i) If A has infinitely many atoms and B is any finite Boolean algebra,
then A~ A x B.

(il) If B and € are finite Boolean algebras and A=A x BxE, then
Az Ax BxAxE.

Proor. (i) If B is an ordered basis for 9, then corresponding to each
atom of U there is an element & of B such that b has an immediate
successor b’ in B. Therefore, there is either an infinite monotonically
increasing or an infinite monotonically decreasing sequence of elements
of B each of which has an immediate successor. We may assume without
loss of generality that the sequence is increasing. Thus the set B is of
order type B =3 (a+1) + 6

icw
for some order types «; and § where &, is an element of I" (that is, «; is
the type of an ordered set which has a first element), for each ¢ € w.
Thus we have B = (ag+1) + 8
icw

~ 3 (1+a;) +
icw
1+ (x+1) + 6

€W

1+5.
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Hence ¥ is isomorphic to its direct product with a two element Boolean
algebra (which has an ordered basis of type 1) and the conclusion (1)
follows by finite induction.

(ii) If now AxAxBxE where B and € are finite (and hence not
atomless) Boolean algebras, then 9 obviously has infinitely many atoms
and the conclusion (ii) follows immediately by part (i) of our theorem.

In the subsequent discussion, we will use the following notation: For
any natural numbers n and ¢, let a,, ; be the set consisting of the natural
numbers in,in+1, ..., in+(n—1). For each positive integer »n let M,
be the family of all those subsets # of w such that, for some y < and
some finite zcS w,

= Ay ;UZ.

i€y
It is easily seen that the set M, under the operations of union, u, inter-
section, N, and complementation with respect to w, , forms a Boolean

algebra. We denote this algebra by M,. I, is easily seen to be infinite
(the power of the continuum) and atomistic, the atoms of the algebra
being a, ; (the set consisting of just the single integer ¢) for each 7 € w.

We now state in a series of lemmas the properties of I, which we
shall need. In the following, ¥ will denote a two element Boolean alge-
bra.

Levma 1. M, =M, x I,

Proor. Clearly it will suffice to show that an algebra obtained from
M, by deleting » atoms is isomorphic to IN,. We will show therefore
that M, [a, o] is isomorphic to IM,. Let F be a function such that for
each element x of the algebra 9,[a, o], F(x) is the set of all those natural
numbers ¢ such that i +7 € z. It is easy to verify that F maps M,[a,, o]
isomorphically onto I,,.

Lemma 2. M, non->M, x T* for 0<k<mn.

Proor. It will suffice to show that I,[a; ,] is not isomorphic to M,,.
To do this, we will show that 9R,, has a certain algebraic property which
sm,,[@,] doesn’t have. If B is the set of elements of a Boolean algebra
B, then a subset 4 of B will be said to be a complete partition of B if
(i) Any two elements of A are disjoint, (ii) The least upper bound of 4
is the unit element of B, and (iii) If C is a subset of 4, then the least
upper bound of C is an element of %B. It is clear that IR, has a complete
partition A each element of which is a sum of exactly » atoms, for we
can take A4 to be the set of all a,, ; for ¢ € . We wish now to show that
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M,[az o] has no complete partition each element of which is the sum of
exactly n atoms.

Suppose, on the contrary, that 4 is such a partition of M,[a; ]. Let
O be the set of all x € 4 such that x+a,, ; for each ¢ € w. Suppose C is
finite. Let ¢ be the sum of elements of C. The number of elements of ¢
is then finite and a multiple of » since it is the union of a finite number
of disjoint sets each of which contains » elements. But ¢ is also the
union of a finite number of sets a, ; together with the set a, ,—a;,
(which has n—F% elements) and so the number of elements of ¢ cannot
be a multiple of n. Therefore C' must be infinite.

We will now show that there exists an infinite sequence

Cg» Cp> « vy Cjs v v e

of distinct elements of ¢ such that, for each j € w,
(1) an; E CoUCLU ... UG for every iecw.

Let ¢, be any element of C. Clearly (1) holds for j=0, since ¢, and a,, ;
each have n elements but they cannot be equal since ¢y e C. Suppose
now we have a sequence ¢, ¢y, - . ., ¢, such that (1) holds for all j<m.
There are only finitely many ¢ € w such that @, ; intersects ¢cyuc,U ... Uc,
and so we can find an element c,,_; of C' which does not intersect any of
these a,, ;. With this choice of c,,,;, (1) is extended to hold for j <m+1.
Proceeding in this way we obtain the desired sequence.

Let d be the union of ¢y, ¢y, ..., ¢y ...; d is then an element of
M,lar o] since 4 is a complete partition of M,la,, o] and each c; is in 4.
Hence, for some y S o and some finite z S w,

d = U @p i UZ.
€y
But y must be empty since if a, ; were included in d, then it would be
included in a finite union of the ¢; contrary to (1). Therefore d=z.
This is impossible since d is infinite and z is finite. Therefore, M, [a;, o]
can have no complete partition each element of which is a sum of =»
atoms and so it cannot be isomorphic to IN,,.

In connection with the foregoing proof, B. Jonsson noticed that the
structures of the two algebras M, and M, [a, ] can also be distinguished
by means of the following rather simple and natural property: The
algebra I, has an automorphism F such that F™ is the identity auto-
morphism and no atom is a fixpoint of the automorphism F™ for
0<m<n. Mlay o] has no such automorphism.

Math. Scand. 5. 14
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Lemma 3. M, =M, x M,,.

Proor. For each element x of M, let F,(x) be the set of all natural
numbers of the form in+% where 0<k<n and 2in+kex. Let F,y(x)
be defined analogously but with the condition 2in+ & € 2 replaced by
(28+1)n+kex. Let F(z) be the ordered pair (¥F,(x), Fy(x)). It is easy
to verify that ¥ maps I, isomorphically onto I, x IM,,.

THEOREM 4. There exists a Boolean algebra N such that W= WA x T* but
Anon->AxI* for k=1,2,...,n—1. (As before, T is a two element
Boolean algebra.)

Proor. Taking A=9IR,, the result follows directly from Lemmas 1
and 2.

TurorEM 5. There exists a Boolean algebra A such that =A™ but
Anon-=A* for k=2,3, ..., n—1.

Proor. Take A=M,_, xT. By induction, we obtain from Lemma 3
that
M) = My
Hence

(1) A = (M x TP = (M) x T = M, xTF.
For k=n we have therefore from the foregoing and Lemma 1 that
Ar = My X T WM, XTI )T > WM, xT .

Thus A~ A". Suppose now that Ax~A* for 1<k<mn. We then have
from (1) and the definition of U that
?Dtn._]_ xZ = W‘n—l x Tk s
M, xTxT2 = M, xTkxTr-2,
mn—l X i’n—l = (9)2”_1 X in—l) X Szk“l .
Hence by Lemma 1, we obtain from this
My & Wyog x T,
This is contrary to Lemma 2. Therefore % non- Ak,

From the constructions given in Theorems 1 and 4, we obtain the
following further results:

There exist denumerable Boolean algebras N,, W, and B such that
A, x Ay = Uy x AUy x B but B s not isomorphic to o direct product B, x B,
where A, = Ay x By and Wy = Ay x B,
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There exist (non-denumerable) Boolean algebras U, and W, such that
Wy x Wy W, x Uy x T but nesther Uy, Wy x T nor Wz Uy x T

To obtain the first of these results, we take for U, the algebra A of
Theorem 1 for the case n=2, for U, we take the algebra U of Theorem 1
for the case n=3, and for B we take the algebra B of Theorem 1 (which
is independent of n). The proof is a modification of the proof of Theorem
1. To obtain the second of the above results, we take for U, the algebra
M, and for A, the algebra M, ; the result then follows directly from Lem-
mas 1 and 2.

It is well known that Boolean algebras can be considered as special
cases of partially ordered systems. C. C. Chang has shown that Theorem
4 leads to the following theorem concerning such systems.

TrEOREM 6 (C. C. Chang). There exist partially ordered systems N and
B and a finite partially ordered system € such that AxCxBxE but
Anon-~B.1

Proor. Let 1l be a one element partially ordered system whose ele-
ment is distinct from each of the two elements of the Boolean algebra $.
Take A~M, , B M, x T, and € >N+ T (the cardinal sum of U and T).
By applying Lemma 1 (and various elementary formal laws involving x
and +), we obtain

AxC = My x (U+3)
~ (Myx) + My xT)
> My + M xT)
= (MxT) + MyxT)
2 [(MxT)xT] + (M xT) x U]
> (M,xT) x (T+U)
> (MeyxT) x (U+T)
> BxE.

And by Lemma 2, Anon-~ B.

1 Before Chang made the observation formulated in Theorem 5, it was not even known
whether there are three reflexive relational systems 9, 8B, € (each formed by a set of ele-
ments and a reflexive relation) such that € is finite and A x € > B x € but Anon- =~ B.
On the other hand, an example found in [11, pp. 310f.] provides three finite and, in fact,
two-element relational systems with these properties; in this example, however, the
systems B and € (which actually coincide) are not reflexive.

14*
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By a well-known theorem of Stone (see [9]), theorems about Boolean
algebras can be translated into theorems about topological spaces and,
conversely, certain theorems about topological spaces yield results con-
cerning Boolean algebras. As a matter of fact, the result of Kinoshita
mentioned above and Theorems 1 and 2 of this note were originally
stated and proved in terms of topological spaces. As examples of the
results obtained in this way, we give here the immediate topological
consequences of Theorems 2, 3 (i), and 4.

THEOREM 2’ (A. Tarski). There exists a zero-dimensional compact topo-
logical space S with two subspaces S, and S, such that (i) each of the sub-
spaces 8, and 8, is both closed and open in S, (i) each of the subspaces
S, and S, ts homeomorphic to its complement (with respect to S), and (iii)
S, and S, are not homeomorphic.

TaEOREM 3 (i)’ (R. L. Vaught). Every zero-dimensional, compact, and
separable topological space, with infinitely many isolated points, 1s homeo-
morphic to any of its subspaces obtained by removing one isolated point.

Actually, Vaught has shown that Theorem 2’ can be strengthened in
several ways by supplying an independent topological proof. For ex-
ample, the conclusion follows for any Hausdorff space which contains a
convergent sequence of distinct isolated points.

THEOREM 4'. There exisis a zero-dimensional compact topological space,
with tnfinitely many tsolated points, which is homeomorphic to each of its
subspaces obtained by removing n isolated points, but is not homeomorphic
to any subspace obtained by removing k isolated points for k=1, 2, ..., n—1.

In particular, Theorem 4" provides an example of a compact topolo-
gical space, with infinitely many isolated points, which is not homeo-
morphic to any subspace obtained by removing one isolated point. The
first example of such a topological space was obtained recently by B.
Jénsson (his result is unpublished). The space he constructed is, how-
ever, not zero-dimensional,
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