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ESTIMATES OF THE FRIEDRICHS-LEWY TYPE FOR
MIXED PROBLEMS IN THE THEORY OF LINEAR
HYPERBOLIC DIFFERENTIAL EQUATIONS
IN TWO INDEPENDENT VARIABLES

VIDAR THOMEE

The aim of this paper is to investigate the possibility of estimating
solutions to boundary problems of mixed type by means of the boundary
data, on one hand for a hyperbolic system of differential equations of
the first order in two independent variables, on the other for a hyper-
bolic differential equation of arbitrary order in two independent vari-
ables.

In the theory of partial differential equations, estimates for solutions
to boundary problems by means of the boundary data play a fundamental
role. For a boundary problem to be correctly set in Hadamard’s sense,
it is required, beside the unique solvability of the boundary problem,
that the solution in some sense depends continuously on the boundary
data.

The method in this paper is named after Friedrichs and Lewy [3],
who used energy integrals of the type considered here in proving the
uniqueness of Cauchy’s problem for a hyperbolic differential equation
of the second order. The method has recently been applied to Cauchy’s
problem by Leray [10] and Garding [4] [5] for hyperbolic equations of
arbitrary order and by Friedrichs [2] and Lax [9] for symmetric hyper-
bolic systems. To problems of mixed type the method has been applied
by Krzyzanski and Schauder [7][8] and recently Hérmander [6] for hyper-
bolic equations of the second order, and by the author [12] for a hyper-
bolic equation of order three in two independent variables.

Campbell and Robinson [1] showed that the integration of a problem
of mixed type for an arbitrary linear hyperbolic differential equation in
two independent variables can be reduced to the integration of a problem
of mixed type for a system of differential equations of the first order,
and they proved the existence and uniqueness of solutions to problems
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94 VIDAR THOMEE

of these two types. The case of the ntt order equation is reduced to the
case of a first order system in this paper, too. This reduction, however,
is not exact, but involves errors of lower order, which can be estimated
by means of the principal parts. The estimates for the nt® order equation
can be deduced also directly, without passing over a first order system
(cf. [12]), but since estimates for systems of equations have an interest
of their own, this direct method has not been chosen here.

The plan of the present paper is as follows:

In Section 1 notations are introduced and the problem is formulated
for a linear hyperbolic system by means of certain linear normed spaces
and an operator L, which is the direct sum of the differential operator
and the boundary operators. Then in Theorem I two inequalities of
the form

llul] = Okl
are stated, where C is a positive constant independent of .

In Section 2 this inequality is used to deduce the uniqueness of solu-
tions to a boundary problem of mixed type for a hyperbolic system of
differential equations of the first order and the continuous dependence
of the solutions on the boundary data.

In Section 3 Theorem I is proved.

In Section 4 certain restrictions made in Theorem I on the boundary
of the region considered are discussed.

Sections 5-7 are analogous to Sections 1-3 and treat a boundary prob-
lem of mixed type for a linear hyperbolic differential equation of order n.

Finally, in Section 8, some particular boundary operators for the zth
order equation are discussed.

I wish to express my gratitude to Professor Lars Hoérmander, who
read the manuscript and suggested many valuable improvements.

I. The hyperbolic system of first order.

1. Notations and results. Let C,{V) (i=0,1,...; m=1,2,...) be
the set of real-valued vectors

w = u@,t) = (uy(2, 1), up(, 1), ..., up(®, 1)),
which are ¢ times continuously differentiable in the closure ¥ of a simply
connected region V in the x¢-plane. For m=1 we shall usually omit the
lower index and simply write C¥(V).
With « € C,(V) the equations

n
(1.1) Li'u, = (D,-—ociDz)u,; -+ 2 Qg U,y t = 1, R (3
k=1
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(D,=0o[ot, D =0/ox) where «; e CYV) and a,, € C%(V), define a linear
hyperbolic differential operator Lu from C,1(V) into C,%(V),

Ly = (L, ..., Lu) .

For the sake of simplicity we shall suppose x; <0< ...=<x,. — We
remark that the form (1.1) is a canonical form for operators

n n
7 .
Dyu; — ' ey Dy + 3 dyouy, =1 ...,n,
k=1 G=1

in which the matrix (c;) has linear elementary divisors over the field of
real numbers (cf. [11, p. 61]).

On the boundary S of V, which we suppose to have a continuously
turning tangent, except at a finite number of points, which will be dis-
cussed later (condition (b)), certain linear forms are given. Before intro-
ducing these, we make a division of § into parts S, (=0, ..., ») in the
following way:

The characteristic form associated with the operator L,

(1.2) é(r——zxif) ,

divides the &z-plane into parts X; (¢=0, ..., n) where X; is the set of
points making exactly ¢ factors of (1.2) negative (fig. 1). We also distin-
guish between the parts of 2; which correspond to positive and negative
values of £ and denote these parts by 2,” and X;*, respectively. In
general we shall only use this distinction for ¢=1, ..., n—1.

The division of the &r-plane now gives rise to a division of § into
parts §; so that a point of 8 belongs to S; when the exterior normal
v=(v, »,) of S at this point belongs to ;. The notations S, and S,

Fig. 1. Fig. 2.

correspond in an obvious way to 2; and X;". (See fig.1 and 2.) In
order to shorten the statements, we shall include the endpoints in the
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definitions of 8,7, S;” and 8,, so that these parts of the boundary are
closed sets. We introduce the notations
8 =8"USy U...u8,4, and St =81 U8 u...uS8,".
We now make the following assumptions concerning the boundary S:

(a) S~ has a positive distance to S*;
(b) inf|2;] >0, i =1,...,n, where d; = v,—x;v,.
s

Condition (b) means in particular that a passage from one part §; of §
to another is accompanied by a jump in the normal. In Section 4 we
shall discuss the necessity of these assumptions.

Let s signify the arc length on S and let C,(8S,) (¢=0, ...; k=0, ..., n;
m=1, ...) be the set of real-valued vectors

u = u(s) = (uy(8), - ., Up($))

which are ¢ times continuously differentiable on §,. For m =1 we shall
usually omit the lower index and simply write C¥(S,).
On 8S; (¢=1, ...,n) we give a linear operator /,u from C,%S,) to C;%(S,),

lu = (lu(“), cey lii(u)) s
the components of which are linear forms in u with coefficients in C°(8,),
that is,

n
(1.3) lop(w) = (g, s uy) = X lyduy,  k=1,...,5,
J=1

‘Whel‘e likj S Co(Si) (’G—': 1, .« ey 7;; j_—' 1, « ey n) .
About the linear forms (1.3) we assume that

Ui 22 ... It

(L4) | e +0 on 8,
Lt e L

and
el P L B U

(1.8) e % 0 on S‘+ .
Lt I

On §,, conditions (1.4) and (1.5) are identical and simply mean that the
linear forms (1.3) are linearly independent. On §;, for 0 <¢ <=, however,
conditions (1.4) and (1.5) are stronger than linear independence. The
condition (1.4) means that u,, ..., u; are certain linear combinations
of u;pq, ..., u, and ly(u), ..., l;(w) on §;, and condition (1.5) means
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that ,_;.q, - .., %, are certain linear combinations of u,, ..., %,_; and

n—t
La(w), ..., ly(u) on S;".
With R=7V, 8, 8y, S;, ... or 8, we introduce norms defined by

ozt =\ 3 02dR, g = (s pm) € CR).

m
k=T
Here dV is the euclidean measure in V, and dS and dS; are the elements
of arc on § and S;. Further, we introduce the direct sum

CO(V> S) = (Ono( 7)’ 010(81), 020(82): LA ] Cno(sn)) H

and for the elements @=(pp, Py, Psy ---> Ps,) of C%V,8) a norm
defined by

n
llelly, &* = llewlly® + 2 llog;lls;? -
1

=

Now
Lu = (Lu, Liu, ..., Lu)

defines a linear operator from C,1(V) to C°(V,S). According to the
earlier definitions we have

ILully, &* = |ILully?® + é‘; (Il;wlls?

= S Zn (Lyu)*dV + an 3 (L) )28,
=1

=1 Sik=1

Then we can state

TuEOREM 1. Let V be the region considered above with a boundary S
satisfying conditions (a) and (b), and let L be the operator defined above,
where Ly (i=1, ..., n) satisfy conditions (1.4) and (1.5). Then there exist
constants C such that for all u e C,}(V)

(1.6) [ully £ Cllully,s
and
(1.7) ulls = CllLully,s -

Here and in what follows C' means a positive constant independent
of u, but it does not always mean the same constant even during the
course of a proof. When necessary, we distinguish between different
constants by using subscripts.

Math. Scand. 5. 7
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2. Two corollaries. Before proving Theorem I in Section 3, we shall
in this section draw some conclusions from it.
Consider the system of differential equations

(2.1) Lu=f,
where f=(fi, - - ., fa) € 0% V), with the boundary conditions
(2.2) luw =g, i=1,...,n,

where g;=(¢;1, - . -5 9;;) € C;%(S;). This can be expressed concisely in the

single equation
Lu = (f, 91 -5 0n) -

From Theorem I we obtain the following corollaries:
CoroLrARY Ia. The system of differential equations (2.1) with the bound-
ary conditions (2.2) has at most one solution u € C,1(V).

To see this, assume that 4! and u2 are two solutions. This means that
L(u'—u?)=(0,0, ...,0), and hence |L(u'—u?)|, g=0. In view of the
inequality (1.6) this implies ||u! —u?||;,=0, that is, ul=u?2.

CoroLLARY Ib. The soluiions of (2.1) depend continuously on the bound-
ary data (2.2) tn the following sense: Let u' and u? be two solutions of (2.1)
with the boundary data

Luk = gjk, t=1,...,n k=1,2,
Then

n }
(2.3) | > lo =925

For L(u'—u?)=(0, g,*—g:% ..., 9,1 —9,%) so that (2.3) follows imme-
diately from (1.8).

3. Proof of Theorem I. One easily shows the identity
n n
(3.1) Zze_ytAiuiLiu = 2 (D,—Dz(xi)e""Aiuf +
i=1 =1
n n
+ e..y‘yZAiuiz + e-—}’“‘: bikuiuk N
i=1 i k=1
where A, (i=1, ..., n) are functions in C1(¥), which will be chosen later.
Here we remark only that 4; will be >0 in V. Further y is a constant,

which will be fixed later, and b;,, which depends on 4;, «; and a;;,, belong
to C°(V) because of the assumptions.
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Integrating the identity (3.1) over ¥ and using Green’s formula on
the divergence terms, we get (|v] =(»2+»2)t=1)

n n
¢2) (e 324 Luav = (e 32,4024 +
14 t=1 S =1

n n
+ Se—yt l yZAiui2 + Zbikuiuk dV .
v i=1 i k=1
We introduce the notations

S(u, u) = ZliAiuiz 5
i=1

n n
Viv,u) =y 3 Au?® + kzv by i vy -
=1 i k=1

The object is to choose 4; and y in such a way as to make V(u, w) posi-
tive definite in V' and S(u, ) positive definite on S when the boundary
conditions

are satisfied, and then to deduce the desired estimates from the identity
(3.2).

It is immediately seen, that if A, are fixed functions which are >0
in ¥, then the constant y can be chosen so large that V(u, u) is positive
definite in V.

We now show that 4, can be chosen positive and such that S(u, )
becomes positive definite when the boundary conditions (3.3) are satis-
fied. We shall first choose 4; on 8~ and S* and then extend them as
positive, continuously differentiable functions in the whole of V. Then
S(u, u) is non-negative also on S, and S,, for on §,, (3.3) implies that
all u; are =0 and thus S(u, )=0, and on §, all 4; are >0.

Consider S(u, %) on §,_,". There we have 4, <0 for k=2, ..., n and
21>0. The boundary conditions are

Loy, gy « o o5 %) = 0, k=1,...,n—1.
Beside 7,_; (u) (k=1,...,n—1) we then introduce one more linear
form, viz.
ln—l,n(ul’ cee un) = U,

and make the linear transformation

Up-1,6 = ln-l,k(ul’ -"’un)’ k=1 ...,n.
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Because of the condition (1.5) this transformation is non-singular.
8(%, u) can now be interpreted as a quadratic formin u,,_; ; (k=1, ..., n).
When u,,_; ,=0 (k=1, ..., n—1) we shall make S(u, u) positive definite
considered as a quadratic form in the remaining variable u,_; ,. First,
if with a fixed constant 4,>0 we put 4,=0 (k=2,...,7n), we have

S(u, w) = 4 Aythy,_y % -

Now 2,4, has a positive lower bound on 8,_," because of assump-
tion (b). We thus have

S(u, u) Z Cthy_yg, 2
when 4,=0 (k=2, ..., n), where C is a constant >0. We therefore see
that there is an ¢, >0 such that if 0< A4, <¢ (k=2, ..., n), we have

S(u’ u) g %Oun—l,'nz on Sn—1+
if w,4,=0 (k=1,...,2—1). The constant value of the function 4,
used on 8,_;* will be used on the whole of S™.

We then consider S,_,". Here 4, <0 for k=3, ..., n while 1, >0 and
A3>0. The boundary conditions are

by, 1(tys « . .5 w,) = 0, k=1,...,n—2.

As on S, ;" we extend the system of linear forms by two new forms,
viz.

bygm-1(tys - oy 2y) = Uy and 1,5 (4, ..., %,) = ¥y
and make the linear transformation

Up—g 1 = by 1(Uy, - o5 Uy), k=1,...,n,

which because of the condition (1.5) is non-singular. S(u, #) can then be
interpreted as a quadratic form in w,_, ; (k=1, ..., n). When u,,_, ,=0
(k=1, ..., n—2) we shall make S(u, u) positive definite considered as a
quadratic form in the remaining variables u,_, ,, and u,_, ,. First, if
with A4, fixed at the same positive value as on S, _," and 4, fixed at a
positive constant value <&, we put 4,=0 (k=3,...,n), we have

S(u, u) = Ay A Uy 5,2 + Agdguy o e

Now 1,4, and 4,4, have positive lower bounds on S, ,* because of
assumption (b). We thus have

S(u: '”') g 0(“n—2,n—12+un—2,n2)
when 4,=0 (k=3, ..., n), where C is a constant >0. Ason S,_," we

realize that there exists an ¢, <¢, such that if 0< A4, <¢ (k=3, ..., n),
we have
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S(u: u) g %0 (un—z,n-l2 + unvz,nz) on Sn-—2+

if u, 5 =0 (k=1,...,2—2). As we have seen, for any set of A4; satis-
fying these conditions, S(u, ) is also positive definite on S,_;*. The
constant value of the function 4, used on S,_," will be used on the whole
of S™.

The process will now be continued so that we get n positive constants
44, ..., 4, with the property that S(w,u) is positive definite on S*
when the boundary conditions (3.3) are satisfied.

Then 4,, ..., A, are fixed on S~ after the same principle so that
S(u, u) becomes positive definite when the boundary conditions (3.3) are
satisfied. This time, however, we fix 4, first, and then 4,,_,, etc.

On S;=8;uS;" (1=1, ...,n—1) we then have
S(u, uw) = C’{(li’i+1(u))2+ e +(lm(u))2}
when l;(u)=0 (k=1, ...,%). Here l;(u) (k=¢+1, ..., n) are auxiliary

forms defined on S, with the property that [, (u) constitute a set of n
linearly independent forms.

We now extend 4, ..., 4, to positive functions in C*(¥V) and choose
the constant y so large that V(u, ) is positive definite in V.

Then we return to the identity (3.2), which may be written

Se—vtV(u, wdV =\ e 3 240, LndV — Se—vtS(u, w)ds .
J 3

14 14 N

Since V(u, u) is positive definite in ¥ we obtain

lully? < € S eV (u, w)dV
14

0{ Se—vt ' 2Au,LaudV — Se-vtS(u, u) dS}
=1 &

< 01§= éuiz }% { > (Liu)z}%dV - O§e—V‘S(u,u)dS

t=1

< Cyllully |1 Lufly — C'\ e 8(u, w)d8

Ne

= lully (@ zally) = © eSS
S

S Huly*+1021Laly? — O | eSS,
S
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that is,
(34) luly* S CollZuly? - Cy { e, was .
8
In order to estimate the last term in (3.4) we observe that, since
S(u, u) is positive definite on S; in the variables I, (u) (k=i+1, ..., n)
when [, (4)=0 (k=1, ...,1), we have on S, (¢=1, ..., n)

S(u, u) 2 C{(l, ()P + . . . + (L)} + Sy(u, u).

Here Sy(u, u) is a quadratic form in J; () (k=1, ..., n) which is linear
in I;(u) (k=¢+1, ..., n). By completing squares we therefore see, that
S(u, u) becomes positive definite after addition of a sufficiently large
multiple of (I;(u))*+ ... +(l;(w))% that is,

(3.5) Co{(laa(w)P+ . . . + (Lin(w))?}
< S(u, w) + Cy{(lew)*+ . .. +(lu(w))}

In order to prove the inequalities (1.6) and (1.7), we deduce from (3.5)

(3.6) Cullulls? < €4\ eS(u, w)dS; + Cuallauls?
Si

where C, is the constant C, in (3.4). On S, it is obvious that

(3.7) Caolltlls,? < 04Se-V‘S(u, u)dS, .
So

Therefore, adding (3.4), (3.6) and (3.7) and using trivial estimates, we get

Cululs? + luly* = Co Ialy® + 3" 2}

1=1

which contains inequalities (1.6) and (1.7).

4. The necessity of conditions (a¢) and (b). In this section we shall
show by examples that the inequalities (1.6) and (1.7) with the norms
defined in Section 1 are not always valid if one of the conditions (a)
and (b) is deleted. We remark that in the proof of inequality (1.6),
condition (b) is not used on 8, and S,, and that in the proof of inequality
(1.7), condition (b) is not used on S,. In the more restrictive form
given, condition (b) can, however, be used throughout the paper.

Let us consider the operator

Lu = (Lyw, Lyu) = ((Dy— D, )u,, (Dy+D,)uy)
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in a region V and let us particularly consider this operator for functions
of the type

(4.1) U = (Uy, Uy) = (fl(t+x), fz(t“x)) ,

where f, and f, are continuously differentiable functions. Thus u, is
supposed to be constant on straight lines parallel to {+2=0 and u, on
straight lines parallel to { —x=0. We then see that Lu = (L,u, Lyu)=(0,0),
and thus

(4.2) Zuly = 0.

By making different choices of ¥ and the boundary operators we
shall now construct examples contradicting the inequalities (1.6) and
(1.7) in cases where the conditions (a) or (b) are not fulfilled.

We first consider condition (a). Let S, be void (fig. 3), so that condi-
tion (a) is not fulfilled. Consider the boundary operator l,u=wu;—u,.
For w=(k, k), where k is a constant +0, this implies a contradiction;
for (4.2) combined with |[l,ulls,=0 gives [[Lul,, g=0, while |ul; >0,
|l4]lg >0, which contradicts inequalities (1.6) and (1.7).

Fig. 3.

We then consider condition (b). Here let V' be the segment of the
circle 22+ (t—1)2=2, which is situated above the z-axis (fig. 4). Since

inf|a,] =0, i=12,
S

(%= —1, ay=1) condition (b) is not fulfilled.

We shall consider the boundary operators lu=u,—u, on §; and
lLow=(uy, uy) on S, On 8, let w be=(p, (), ,()), where p,(2) is a
continuously differentiable function with the properties

~1 xS —1+1/(40?),

o() = o for {1—1/(4w2) sz=1,

and



104 VIDAR THOMEE

+1

quwz(x)dx ~1.

-1

When u is of the type (4.1) we realize that w, is defined in the region
bounded by S;7, 8, and the line {+x=1, thus particularly on 8,”, and
that u, is defined in the region bounded by S;*, S, and the line t —x=1,
thus particularly on 8,". By putting #,=u, on S;” and u,=u, on 8;"
we define » in the whole of V. Now we have

Itls,? = § (w—w)2as; = 0,

Sy
+1

uls? = § o2 +uas, = 2{ g 2w)de = 2.
S —1

Combined with (4.2) this gives
(4.3) Lullp,s* =

However, u,=o in a band parallel to the line t+x=0, the breadth of
which is=1/(20), and «,=w in a band parallel to the line t—x =0, the
breadth of which is=1/(2w). These bands have been shaded in fig. 4.
Therefore we get

Jully® = § Gt + 8V 2 Cortof = Cw
14
and

lulls? 2 S (WP +u?)dS, = Cote? = Co .
So

Combined with (4.3) this contradicts inequalities (1.6) and (1.7).

II. The hyperbolic equation of order n.
5. Notations and results. Suppose that
Mu = X a,Dvu, uecC¥V),

lpf=n
defines a linear hyperbolic differential operator in V. Here p=(p,, p,),
|p| =P, + Py, PP =Dt D Fe, @, € CY( V) for |p|=n and a, € C%(V) for |p| <n.
The characteristic form associated with M is then, if a(, ¢=1,

n

(5.1) Y a,ee = [T (1-u8)

|pl=n t=1
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where we assume &, <a,< ... <a, and «; € CY(V). — Observe that the
assumption o, # oy, for ¢ +£ is essential in this and the following sections;
this was not the case in Sections 1-3.

The characteristic form (5.1) is the same as the characteristic form
(1.2) in Section 1, and therefore we get the same division of § into parts
as earlier. We assume as before that the boundary has a continuously
turning tangent except at a finite number of points, and that the condi-
tions (a) and (b) are valid.

Before we introduce our boundary operators we shall define n opera-

tors M (=1, ..., n) of order n—1,
(5.2) Mu= 3 b,,Du
|pl=n~1

with the characteristic forms

(5.3) S by, ™E = [] (t—x8).
Ipl=n~1 ki
M (i=1, ..., n) constitute a set of n linearly independent forms in

the derivatives DPu with |[p|=n—1, and these derivatives can be ex-
pressed as linear combinations of M ,» in the following way:

n
Dy = Mol B Mu, |p| =n—1, where ;=[] (x;—o)".
i=1 k+i
This can be proved simply by means of Lagrange’s interpolation formula.
On 8,, we define the “Cauchy’’ operator m,u for u € C»1(V),

mu = (DPu; |p| £ n—1).

On 8, (¢=1, ..., n—1) we define a boundary operator mu from C*-1(V)
to C,%(S,),
L mg = (my(u), ..., my;(w))

the components of which are linear forms in D?u with |p|<n—1 and
coefficients in C°(S;),

(5.4) my(u) = 3 my,DPu, k=1,..., 7.
Ipl=n-1

Now any linear form in D?y with |p|=n—1 and coefficients in C%S;)
can be represented as a linear combination of Mu (i=1, ..., n). We can
therefore find functions mJ € C%(S,) such that

n
(5.5) my(u) = Zmiijju - 2 dik,pr“ .
=1

J |pl=n—2

In order to make formula (5.5) valid also in the case ¢=n, we define
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k(u) .Dk—l.D ”"ku = 2“] ‘lﬁ]Mju

and put m,,/ =x*-18;
About the linear operators m;u we assume that

1 2
My My e Myt
(5.8) ] e + 0 on Si—
1 .
mii ..... mi,ﬂ
and
n—t+1 n—i+2
myy "t myy . my®
(5.7 e + 0 on Si+ .
—i+1
mynt L my"

For ¢=mn (5.6) and (5.7) are consequences of the definition of m,u and
of the fact that «,+«,, for i+ k.

Consider the characteristic forms of (5.4) and Mu (=1, ..., n), viz.
Mig(&, ) = 3] My, THEP®
Ipl=n—-1
and

H &) = IT (=),
ki
respectively. Conditions (5.6) and (5.7) can now be interpreted in the
following way. Condition (5.6) means that on §;”, the augmented sys-
tem (&, 1) (=1, ...,7), Jﬁk(f, 7) (k=i¢+1,...,n) forms a set of
linearly independent polynomials, that is, there do not exist functions
¢ €C%8,) (=1, ..., n), where not all of the c;,=0, such that

ké,: Ca Mg(é, T) = _21; Cix Mk(f: 7).
M & 7) (k=1+1, ..., n) being linearly independent, it is sufficient to
require that not all of the ¢, (k=1,...,%) vanish. Because ¥4 (&, T)
(k=i+1,...,n) all contain IT¢_,(v— ;&) as a factor, and because every
homogeneous polynomial in § and 7 which contains /1}_,(v—«;£) as a
factor can be written as a linear combination of M W& 7)) (k=t+1,...,m),
we realize that condition (5.6) is equivalent to the following:

(5.8) The linear forms my(uw) (k=1, ...,1), given on 8;” (¢t=1, ..., n),
are such that mo mon-trivial linear combination of the polyno-
mials (&, v) (k=1, ..., 1) contains IT;_, (v —n;&) as a factor.

Analogously, condition (5.7) is equivalent to the following:
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(5.9) The linear forms my(u) (k=1, ...,1) given on 8;" (i=1,...,n)
are such that no non-trivial linear combination of the polyno-
mials Mg(&, ) (k=1, ..., 1) contains I}, ;. (v—x;£) as a factor.

For functions u € C¥(V) we introduce norms defined by

ozt = { X (DPupdR, R = 7,8, 808 ..., 8,

plolsk
For m,u we take the norm
lImaulls, = l%lln-1,s,
and for mau (1=1, ..., n—1) we take a norm defined by
i i
Imauls? = 3 Ima s = k=2§ (ma(w)ds;

Like in Section 1 the linear operators in ¥ and on S; (i=1, ..., n)
can be expressed concisely in the single equation

Mu = (Mu, mu, myu, ..., m,u),

and we take for the norm of Mu
n
M|uly s* = [|Mulop® + 3 lImaulls?
=1

= S (Mu)2dV + 3’1 S j’ (g (w))*dS; + S 2 (Dru)?ds, .
i d =

< P
v $i Sn Ipl =n—1

‘We can now state

TrEOREM II. Let V be the region considered above with & boundary S
satisfying conditions (a) and (b), and let M be the operator defined above,
where Mw is hyperbolic in V, and where mgu (¢=1, ..., n) satisfy condi-
tions (5.8) and (5.9). Then there exist constants C such that for all u € cn(V)

(5.10) lly—y, 7 = ClMully s
and
(5.11) [lla-a,s S CliMully,s -

6. Two corollaries. Before proving Theorem II in Section 7, we shall
in this section state two corollaries, analogous to Corollary Ia and
Corollary Ib in Section 2.
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Consider the hyperbolic differential equation
(6.1) My =f,
where f € C°(V) with the boundary conditions
(6.2) mu=g; on 8, <¢=1,...,m,

where g; € C2(S;) for ¢=1, ...,n—1 and g, is a set of Cauchy data on
S, of a given function in O»-1(V). We then have

CororLARY Ila. The equation (6.1) with the boundary conditions (6.2)
has at most one solution u € C(V).

CoroLLARY IIb. The solutions of (6.2) depend continuously on the
boundary data (6.2) tn the following sense. Let ul and u? be two solutions
of (6.1) with the boundary conditions

miujzgii: j=1,2;i=1,...,n.
Then
n %
[l — 2|,y p < 0{2 gt —9llls?( -
i=1

The proofs are analogous to those of Section 2.

7. Proof of Theorem II. The operators Mu (i=1, ..., n) defined in
(5.2) and (5.3) have the property that (D,—o«,D,)Mu has the same
principal part as Mwu, that is

(7.].) (Dt-—cxiDz)M,;u = .Mu + 2 Ci’pru )
lpl = n-1

where ¢; , € C°(V). Introducing the operators
L,l:(v) = (.Dt"—lx,’;.Dx)”i, '&. = 1, ooy n )
where v = (v;, ..., #,), (7.1) can be written

(7.2) L(Mu, ..., Mu)=Mu+ 3 c;,DPu.

|pl =n—1

Here L, is an operator of exactly the same kind as the operator L; con-
sidered in Section 1. Introducing the operators
l,;'v = (lﬂ(’v), ey lii(v)), ’l: . 1, A (3
with "
law) = X myiv, k=1...,ii=1...,n,
j=1

we can write
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(7.3) lg(Myu, ..., M,u) = mg(u) +I IZ diygpDPu, k=1,...,7.
pl=n-2

(Campbell and Robinson [1] showed that the operators M,u can be

modified with lower order terms so that the coefficients ¢; , in (7.1)

and d;;, , in (7.3) all vanish. To prove this, however, these authors need

existence theorems for quasi-linear systems.)

The operators L;u and [u fulfill the assumptions of Theorem I. In
particular, conditions (1.4) and (1.5) are consequences of conditions (5.6)
and (5.7), which are equivalent to conditions (5.8)
and (5.9). We can therefore apply Theorem I and
estimate M,;u (¢=1, ..., n). In order to be able to
get rid of the terms of order <n»—1 in (7.2) and
<n—2 in (7.3) we shall not, however, use Theorem I
on V, but on a part V(8) of V to be defined pre- Ss z
sently.

Let V(0) =V n{t< 0} and let S(0) be the boundary
of V(0). Then in the division of 8(0) into parts
8,(0) (1=0, ...,n) after the direction of the exterior normal », S;(0) is
a subset of 8, for ¢=1, ...,n. With

6,= inf ¢, 0, = supt,
@, eV @, eV
V(6) and S(0) are void for <0, and V(6)=V and S(6)=S for 626,
(see fig. 5.).

We now use Theorem I for the operators L;u and l,u and for the region

V(6). The inequality (1.7) in Theorem I gives the following estimate

Fig. 5.

n
2 Wl[i'“'”o,S(e)2
1=1
n i
+ 3 é’

0, V(6) t=1
n
< 0{1ulo 5 + s vo? + 3

It is easy to see, by examining the proof of Theorem I, that the con-
stant C' can be chosen independent of 0. Since every derivative of u of

2

N

1ku) + 2 dzkau

=n-2

O{”Mu + 2 ¢y, Dru

[pl =n-1

0, Si(6) =

()52 + uunn_z,swf} .
=1

order n—1 is a linear combination of M (¢=1, ..., n), we obtain
[foe] ]n—l, S(e)2
n
(7.4) = 0{ ”7/'”n—2,S(e)2 + 2 “Miu”O,S(0)2=
i=1

%

< Ol il vt + [hcnsf + 1l + 3 3 matalls?

=1
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The following well-known inequality is obtained by integrating the
derivatives of order »—1 along curves from S, to S(6), followed by
obvious estimates:

-z, 502 = C iy, vey + ”u”n-z,snz} .

Put into (7.4) this gives

(7.5) ”’“”n—l,S(t'i)2 =S 0{ ”’“f”n—l,V(a)2 + [[Mully, y® + é‘? ”miu”sie .

We define
p(0) = ”u”n—l, I/'(e)2 .

It is easy to see that y(0) is a Lipschitz continuous, increasing function
of 0, that is, y(6) is an increasing function such that

P(0")—p(0') < C(6”"—0) forall 6” > 6",
and that almost everywhere

v'(6) ”“'”n-LS(a)2 .

A

Hence (7.5) implies
(7.6) ¥'(6) £ C(p(0)+K),
where C and K, n

K = [[Mully,»® + é? [Imsulls;? 5

are independent of §. Multiplying both sides of (7.6) by e~C% we can
write
(7.7) gé(e—c"y)(G)) < OKe 00,
Integrating from 8, to 6,, we obtain from (7.7)
e iy(6y) — e C0p(B,) = e 1y(6;) < (€T —e K .
With a new value of the constant C this gives

6,) < CK,
that is, v

(7.8) ey p? < 0{ (Ml + 3 um,-uusf} ,
which is the inequality (5.10). From (7.5) with 6 =0, and (7.8) we get
s s < 0{ |l + 3 umiunsf},

which is the inequality (5.11).
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8. Some pasticular boundary operators. In this section we shall first
study the ¢standard’ mixed problem, that is, the problem of solving
equation (6.1) when « and its derivatives D~y (k=1, ..., ) of orders
<¢~1in the direction of the exterior normal » are given on S;. In par-
ticular on S, we have Cauchy data. We assume that the boundary is
n—1 times continuously differentiable except at a finite number of
points, or, more exactly, that » e C,"~%(S;) on §; (1=1, ...,n). On §,
we still assume » € C,%(S,). In order to reduce this problem to a problem
of the kind considered in Theorem II, we shall differentiate D*-lu
n—k times with respect to the arc length s on S and consider the
boundary forms

(8.1) my(u) = D DF1u
n—2

= ('VEDt—’VT.Dx)n“k (’VEDx'l'Vth)k—lu +| lz‘kmik’pru N
pl=
k=1, ...,7on 8, ¢=1...,n.

The coefficients of these forms belong to C%S,) because v € Cy»~%(S,).
Here (v.D,—»,D,)"*(v.D, +v D,)-1u shall be interpreted as a homo-
geneous differential expression of order n — 1.

In order to see that the assumptions of Theorem II are fulfilled we
proceed as follows. The polynomials

(8.2) My(&, 7) = (-9, &) (v 4y, 7)k,
k=1...,7on 8, i1=1...,n,

associated with the linear forms (8.1), are clearly linearly independent.
For in an arbitrary point of §;, they correspond to ¢ different derivatives
of order n—1 with respect to the coordinates in the coordinate system
defined by the normal and the tangent of S; at this point. A non-trivial
linear combination of the polynomials (8.2),

(8.3) kZ' Cap Mig(E, T) = (v;f—vzﬁ)”“'kf Cip(reT— 1 8V E (e €+, T,
=] =1

is therefore a non identically vanishing homogeneous polynomial of
degree n—1. To see that on S, this polynomial does not contain the
polynomial H;;l (v — ;&) of degree ¢ as a factor, we have only to observe
that, because

i
2 € (veT—, E)ik(veé+v, 7)k-1
k=1

is a polynomial of degree i—1, 7—a;& would have to be a factor of
(vt —»,&)"—¢ for some value of j (j=1, ..., ¢). This would imply
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lj = ’V,-—cxj’vs =0 3

which would contradict condition (b). We have therefore proved that
the linear forms mgy(u) (k=1, ..., ¢) satisfy condition (5.8). Similarly
we prove that the forms m,(u) (k=1, ..., 1) satisfy condition (5.9).

If instead of the ‘“‘standard’ mixed problem we consider the problem
of solving equation (6.1) when i consecutive derivatives D Frdi—ly
(k=1, ...,7) of u in the direction of the exterior normal » of orders
=n—1 are given on §;, we can find a simple necessary and sufficient
condition on § for the assumptions of Theorem II to be satisfied. In this
case, we need only assume that v e C"%%,) (=1, ...,n). The linear
forms associated with the boundary problem are

(8.4) my(uw) = Ds”—dz'—k D,,]”di'l ”

n—2

= (ngt'—”rDm)n—di_k(VEDx-l_VrDt)k+di~1u -+ 2 m’ik,pru H
|| =k+d;
]C=l,...,7:;di§00nsi, 7:=].,...,n,

and the polynomials m;, (&, ) associated with the linear forms (8.4) are
M€, T) = (BT —0, &) HF (p & 4y g)ErdiTt

As before, these polynomials are linearly independent, and we form a
non-trivial linear combination of them,

i
2 i (7=, &) N (& o, 7)PHA
=1

= ('vi T vrg)ﬂ—di—i (VE E + Yy T)di sz Cir (VE T ‘E)i—k (7/5 5 + <3 T)k—1 .
k=1

In the case d,>0 it is easily seen that, bgca.use Aj=v,—o;ve+0
(=1, ..., 1), this polynomial never contains Hj@:l(r——cij) as a factor
on 8,7, that is, condition (5.8) is satisfied if and only if »,+o;»,+0
(j=1,...,2) on 8,”. Similarly, condition (5.9) is satisfied in the case
d;>0 if and only if v, + «;», 40 (j=n—i+1, ..., n) on §;".

Remark. It is clear that the above results still hold for arbitrary
my,(w) with the same principal parts as (8.1), also if the boundary is
only continuously differentiable except at a finite number of points.
The assumption that v € C,"~%(8S;) (¢=1, ..., n) is only needed in order
to deduce (8.1) from the original definition of the ‘‘standard” problem.
The same remark applies to the boundary forms (8.4).
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