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SOME IDENTITIES INVOLVING
THE PARTITION FUNCTION

ODDMUND KOLBERG

1. Introduction. In a paper concerning certain arithmetical proper-
ties of p(n), the number of unrestricted partitions of #», Ramanujan [13]
stated without proof the identities

{(1 —2%)(1 —210)(1 —25) ...}5
{(1-2)(1—22)(1—a3) ...38 ’

b

p(bn+4)x™ =5

Il
=]

n

- I () (e S RS o (1—2)(1—219) ...}
g?(7n+5)x =T a3 T O i)

The first proofs were given by Darling [4] and Mordell [9] respectively.
See also Watson [14], Rademacher and Zuckerman [12], Rademacher
[11], Kruyswijk [7], Bailey [2] [3], Newman [10] and Fine [5].

Other identities involving the partition function have been found by
Watson [14], Zuckerman [15], Rademacher [11], Lehner [8] and Fine [5].
Atkin and Swinnerton-Dyer [1] have deduced several remarkable con-
gruences for the moduli 5, 7 and 11.

In the following we shall prove some identities which seem to be new.
We also give new proofs of the Ramanujan identities and four of the
congruences of Atkin and Swinnerton-Dyer.

2. Definitions and lemmas. We use the notation

[ee]

P(x) = I_Z (I—-a).
Then we have the well-known identities (with p(0)=1)
2.1 p(x)t = 3 p(n)ar (Euler) ,
n=0
(2.2) plr) = 200’ (=1)rgin@ntd (Euler) ,
n=—00
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o

(2.3) p) = Y (= 1)"(2n+ 1)atn D (Jacobi) .

n=0

In the following ¢ always denotes a prime. Now let ¢ be given. We
then define, for s=0,1, ...,¢—1:

(2.4) go= X (=1yainemd,
4nBn+1)=s (modg)
(2.5) hy = P (= 1)"(2n+ 1)ztn®+D |
in(nt) =s (modg)
nz0

that is, we split up the power series into g parts, such that each part
consists of those terms whose exponents belong to the same residue
class (modg).

Lemma 1. If 24s+1 is a quadratic non-residue (modgq), them g,=0.
If 245+ 1=0 (modq), then

g = (— 1@ @D (%)

Proor. We have
24-4n(3n+1) + 1 = (6n+1)2.

Hence, if 24s+1 is a quadratic non-residue (modg), we have for all »

in(Bn+1) =s (modyg),
and therefore g,=0.
Now let 24s+1=0 (modg). Then g, consists of those terms in (2.2)
where
(2.6) 24-3n(3n+1) + 1 = 0 (modg),

that is
6n+1 =0 (modg).

Obviously, ¢>3. Let
ny = $(-1+9),

where the upper sign is used when g=1 (mod6), the lower sign when
g= —1 (mod6). Now the general solution of (2.6) can be written

= qk+ng, k=20, +1, +2,....

Thus we have
o0
g, = 2 (- l)qlc+no xt @+n0) Bgk+3no+1)

k=—c0
= ( —_ 1)"0x§no(3no+1) Zw' ( - l)kxik('skil)qﬁ

k=—o0

= (— 1)@l (q*—l)(p(xq’) .
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Lemma 2. If 8s+1 is a quadratic non-residue (modgq), then h,=0. If
8s+1=0 (modyg), then

hy = (— 1)i(q—l)qxt(q2—1)(p(xq2)3 .
Proor. The first part of the lemma follows immediately from the
identity
8-in(n+1) + 1= (2n+1)2.
Let 8s+1=0 (modg). Then we have to solve the congruence
8:in(n+1)+ 1 =0 (modg),
where now n=0. (Obviously, ¢>2). The solution is

n=qk + }(g—1), E=0,1,2 ....

Hence
oo
by = kz* (— 1)#HE@-D (gL 4 q) g {eh+E@- DI Gh+HE (@+D)
=0
= (- 1)*(7*1)5190*,(92‘1)200' (- 12k + 1) ath®+Dg?
k=0
= (- 1)%(q—l)qx%(q2—l)(p(xq2)3 .
We define
9o Jy - - gq—l
D — gq—»l gO e gq—2 ,
7 92--- %
9-s J-s+1 e g~s+q-—2
Ds= 9-s-1 [ "'g~s+q—3 , 8= 0’ 1’.”’q_1’
g—s—q+2 g—-s-q+3 cegg

where we have to put g,=g¢g, when r=s (modg).

LevMa 3. We have

Proor. Let w=e¢?"/2, Then, by a well-known theorem we have

q-1
(2.7) D = JT (go+w¥gy+ ... + @ Vkg, ).
k=0
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But from the definition of g,=g,(x) it follows that

wSkgs(x) = gs(wkx) »
and hence

Jo+ kg, + ... +w@Vkg
= go(wkFx) +gy(0fx) + ... +9,1(0*2) = p(wtx).

Now, returning to (2.7) we get

9-1
D = J] gp(w*x)
k=0

-

= T JT (1—cFnam)

n=1 k=0

= (1-zm) [ (1-ams,

n=%0 (modgq) n=0 (modgq)

1l

and lemma 3 follows.
Levva 4. We have, for s=0,1, ...,9—1,

oo qg
2 plgn+s)x?+s = (— 1)@-Ds _ﬂ”ﬁ_)_D

n=0 @ (x2)2+1 .
Proor. Let -
P, = D' p(gn+s)aam+e
n=0
Now we have
.P0+P1+ ) +Pq_1 = ¢(w)_1 3

Got+ git+ ..o+ g1 = &) .
By multiplication we obtain

gopo +gq_1P1+ +91Pq_1 =1,
91 Py +goP; +...+9:Pp 1 =0,

...............................

9o-1Po+9g-2Pit+ ... +9oPyq = 0.

From this we easily find
P, = (-1)e-9:D-1D,,

and lemma 4 follows.
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3. The case g =3. We shall prove the identities

(3'1) ép(:gn)xn — (p(_x:}(:%gf?ﬁ Iz {(1_x9m—5)(1 __xsm—4)}2 —
— (p( ?:ﬁ{(l 2¥m=5) (1 — g®m~4)}-1 |
@) >

(3.2) zoo’p(3n+ 1)z = ]I {(1 —29m-8)(1 —g¥m-1)}-1 4
n=0

o)
p(@°) p(@®)* =

G+ prr "g {(1 Sm-s)(l__an—l)}z ,

o )’ ﬁ {1 —aom-n) (1 —aom-t))-1 +

(3.3) Zo? p(3n+2)x" =
n=0

(p(x:i) (P(xg)z ﬁ {(l 9m—7)(1 — xgm_z)}z ’

(@4 m=1

(3.4) 2’ p(3n)x"2p 3n+ l)x“Zp(3n+2)z"

n=0

_ 2¢(w3)¢(w”)3 + oz P(x3) p(2?)®

p(x)’ p(x)*°
Proors. Lemma 4 yields

o (=)

(3.5) 2 pEns)an = T
where

Dy = 9o*— 9192,

(3.6) D; = "= 9091 »

Dy = g:*— 9290 -

In this case the conditions of lemma 1 are not fulfilled, but we can
find expressions for g,, g, and g, by using the following well-known iden-
tity of Jacobi:

(3.7) 2(:‘0' ylczk2 = ,P(zz)ﬁ {(1 +y22m-1) (1 4y-lzim-1)}
k=—o00 m=1

Math. Scand. 5. 8
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Now, the congruence 4n(3n+1)=0 (mod3) has the solution n=3k,
k=0, +1, +2,.... Hence

o
(_ l)3kx§~3k(9k+l) — 2 (__ l)kx%k_p%‘l]& .

k=—o0

Jo =
k

i

Putting y= — 232, z=2%"/2, we get from (3.7)

go = (@) JJ {(1—a2m-15)(1 — g2im-12)} |
m=1
Similarly we find
g = —ag@?) JJ {(1 —z¥m-21)(1 — g2mm-6)}
m=1

g, = — 2?7 ﬁ {(1 — a2im-24) (1 — g27m-3)} |

m=1
Further, by multiplication

@(2?) p(2?7)3
(3.8) Jo9192 = xaw

Now we have
D, = g — 909192 P 27)217{ — ?Im-15) (] — xzvm—m)}z _
0

I

xg) mIII {(1 x27m—15)( .7}277"_12)}"1 R

and (3.1) follows from (3.5). (3.2) and (3.3) are deduced similarly.
It remains to prove (3.4). From (3.6) we get
(3.9) DoDyDy = gog192(96® +91° +92°) — (96°9:° +9:°92" +92°95°) -
Now, by lemma 3
(3.10) 9o’ +9:° +92° — 3909192 = — v -
P(°)
From lemma 2 we find

hy = —3zp@@®P, hy=0.

We have
o) = (Fo+ 91+ G20

= go®+9:® +9:>+6909:9. +
+3(g0* g1+ 91292+ 92290) +
+3(9091% + 9192 + 9290 -
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Hence, remembering the definitions of g, and 4, we conclude
(3.11) 90’91+ 91°92+92°90 = —z@(®)?,
(3.12) 9o91* + 919" +939,° = 0.
Multiplication of (3.11) and (3.12) yields

(3.13) 0 = g40195(9°+ 91> +95%) + 396291292+ 90°9:> + 9,2 32° + 92°90°
We then get, by adding (3.9) and (3.13)
DyD, D, = 2¢,9,92(90* + 3.2 +92°) + 39029:%95°
= 2¢09192(90° + 9:® +92° — 39091 92) + 9(909192)*
@ P p@)R g
— w S
p(x®)? P(z%)?

Here we have made use of (3.8) and (3.10). Now (3.4) follows by (3.5).

= 2%

4. The case g=5. We shall prove the identities

(4.1) 200’ p(5n +4)an = 5‘P((”:)l5 (Ramanujan) ,
n=0
o n n_ 5P @ (2°)1°
(4.2) néo'p(5n+ 1 nzgp 5n 4 2)& 2 . o) + 25z ——gv(z)lz ,

) . © n @ @) M
(4.3) né(:p(5n)x néo’p(5n+3)x =3 () 25% oy’

(4.4) 3§p(5n+ 1)x”2°°'p(5n+2)x" - 252}(57&)9:”203' p(5n + 3)an
0 n=0 n=0 n=0

=x (fp(5n+4)x")2 R
n=0
(4.5) 200' {p(5n + 1)2>* + p(5n + 2)xn+1}
s (P PR+ 5l 10 (0) )+ 1052 (e
(4.6) f {p(5n) a5 + p(5n + 3)xo"+3}
n=0

¢ (258 {p(@) p(22) + 4z @(2)? p(22°)2 + 1022 ()2 (2%)° + 1523 p(2) p(2*)* + 1024 p(2°)7} .

6*
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We shall also deduce four of the congruences of Atkin and Swinnerton-
Dyer, viz.

(4.7) S;p(5n)x” = @(z) ﬁ {(1 —25m=%) (1 —2¥»-1)}-3 (mod5),
n= m=1

(4.8) S‘p(5n+ ar = (p(x"’)ﬁ {(1 —a5m—4) (1 —x5-1)}-1 (mod5),
n=0 m=1

(4.9) S’p(5n+ 2z = 2¢p(x5)ﬁ {(1 —25m-3%) (1 —25-2)}-1 (mod5),
n=0 m=1

(4.10) zoo'p(5n+3)x” = 3p(x) ﬁ {(1 —25m-3%) (1 — 2¥™-2)}-3 (mod5) .
n=0 m=1

Proors. By lemma 1
(4.11) g1 = —zp(a®), g5 =ga = 0.
From
P(x)® = (go+91+92)°
we find

hy = 39¢°gs+39:290 -
But 4,=0, by lemma 2. Hence
(4.12) Jog2t+g:® = 0.
Tt is convenient to use the following notation:
& =¢"9 B=691""9 4=9"D, 4,=9"D,.

From (4.12) we now get
(4.13) af = -1,
and by (4.11)

(4.14) a+p = —

Further, using (4.13) we find

x1800
0x1p0
A=00uxl1lp|=o00+p5+11.
00x1
1 00«

Hence, by lemma 3
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P .
(4.15) B = - S
From lemma 4 we obtain
0o (p(x25)5
(4.16) né(:p(5n+s)x5"+3 = gt ETRRE

We then evaluate the determinants A, and find

(4.17) Ay = x2-38,
(4.18) A, = —ad+2p°,
(4.19) A, = 202 f3,
(4.20) Ay = —3a+pt,
(4.21) 4,=5.

We can now easily prove the identities (4.1)-(4.6):
(4.1) follows immediately from (4.16) and (4.21).
Multiplication of (4.18) and (4.19) yields

A A, = —2(x5+65) + 3.

@(z5)8
x5 (]9(1/'25)6

Hence, by (4.15)

A,4, = + 25,

and (4.2) follows by (4.16). The proof of (4.3) is similar.
(4.4) follows directly from (4.1), (4.2) and (4.3).
Further
A1 +4; = — (03455 +2(2+ %)

= — (@2 +PP—3(x ) +4.

85

We insert for «+p from (4.14) and evaluate. Then (4.5) follows by

(4.16).

Similarl
Vo Ayt dy = oA i—3(xtp)

= (B + 4 +PP -3 +h)+2,

and (4.6) follows in the same way.

We shall then prove the congruences (4.7)-(4.10). From (4.5) we get

@ (x25)2

(@) hy (mod5).

D

(4.22)
Now

p(bn+ 1) =

3
1
o
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ho — 2 (___ 1)5k(10k+ 1)$1}~5k(5k+1) + 2" (- l)ﬁk—l(IOk_ 1)1::}(516—1)516
k=0 k=1
= 3 (—1)ka¥ 50D (mod 5) |
k=—c0

We now make use of (3.7). Putting y= —252 z=2a252 we get
ho = ¢(x25)n {(1 — g2m-15) (] _x25m-—10)} (mod5) .

m=1

This can also be written

ko = (p(x5) ll {1_x25m—20)(1_w25m—5)}—-1 (mod5) .
m=1
Hence, by (4.22)

[ 5\2 ©0
2 p(n+ 1)zt = p@ JT {1 =254 (1 —5™-1)}-1 (mod5) .
n=0 ‘p(x)s m=1
But ¢(x)’=@(2%) (mod5), and (4.8) follows.
The remaining three congruences are now easily proved:
(4.9) follows directly from (4.2) and (4.8).
Further, by (4.17), (4.18) and (4.19)

AgA,—24,2 = 160 —5p%.

Hence
4, = 24,24, (mod5),

and we get by (4.186)

”‘i p(bn)a™ = 2 (1.2:’) p(5n + 1)x")2< 2007 p(5n+2)x”)—l(mod5) .

n=0

Now (4.7) follows by (4.8) and (4.9).
(4.10) follows from (4.3) and (4.7).

ReMARK. Several relations involving the quantities 4, can be estab-
lished, which by (4.16) would yield other identities. For instance

AgA,+ 4,4, = 242,
A A+ 4,4, = 24,2,

AP Ay + A2 4, = 2(65+ %) + 4(a®+°) + 52,
A2Ag+AS2Ay = (05452 — 13(05+f5) — 14.

I

We also mention that elimination of « and g from the equations
(4.13), (4.14) and (4.15) would give us the Ramanujan-Watson modular
equation of the 5th order (see Watson [14]).
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5. The case ¢=7. We have the identities

[} 7\3 7\7

(6.1) 'p(Tm+5)an =17 Z((a;)l 491 (};((Z))s (Ramanujan) ,

n=0
(5.2) X' p(Tn+1)ar 3 p(Tn+3)z 3 p(Tn+4)an

n=0 n=0 n=0

7\5 7\9 713
1578 L 1902, P 32 4+ 24,7352 P&
p(x)? o () p(z)é
4 37509 POV qepa 0T
P(x)20 o(z)*

(5.3) X p(Tn)ar 3 p(Tn+2)am 3 p(Tn+ 6)a®

n=0 n=0 n=0

_ 22PN o, PO L osa e PEE
o(x)® o (x)? P(x)e
+ 3.753;3?!"27)_17 761;4(&7)3 .
@(x)?° @(x)>
Proors. The lemmas 1 and 2 give
ga = —x2p(ah), s =gy =9gs = 0,
hy = —Ta0g@)3,  hy = hy = hy = 0.
From
P)® = (go+9g.+g2+95)°

we find
(5.4) 3(902g2+ 91290 +92295) = ha = 0,
(5.5) 3(912921+ 92290+ 95°91) = hy = 0,
(5.6) 3(902g5+ 92291 +95292) = hs = 0,
(5.7) 92> + 6909195 =hg = 7g5°.
We put

=gy B=9""0 Y=0""9: 4=9""D A;=g,"D,.

Now, from the equations (5.4)-(5.7) we obtain

(6.8) aft+al+y =0, By2+pi+x =0, yal+yi+f=0,

(5.9) afy =1.
By lemma 3
7\8
(5.10) 4- &)

Tl p(zt)8



88 ODDMUND KOLBERG

On the other hand, using (5.9), we find by evaluation of the determinant
(B.11) A = o™+ 7 +y" — T(af®+By* +yod) + 14(a?82+ 2% +p%4%) + 8.
It is now convenient to introduce quantities y, defined by

(6.12) Y1=0%6, Yy =P ys=7r.

Then, by (5.8) and (5.9) we easily find

(6.13) Y%= —w1— 1, YYs= —Y:—1, Yah = —ys—1,

(5.14) Y1Y2Ys =1,
(5.15) a?f% = —y,—1, Byi=—y—1,  yPa® = —yz—1,
(5.16) oafs =y, —y,+1, BY® = Yo—ys+1, yod =yz—y+1,

(6.17) o7 = —y Py —ys—1, 1= —yltty.—y—1,
Y= —yPtys—y.—1.
Now, returning to (5.11) we get
4= —(y2+y2+ys®) — 14(y1+ys+ys) — 58
= — (1+Y2+¥s)® — 16(y;+y,+y;) — 64
= —(+Ya+ys+8)72.
Hence, by (5.10)

o)
(5.18) y1+y2+y3+8 = %+ :W .

Considering the first term in the expansions of «, § and y in powers of z,

we find
Y= —27+..., Yo= —14+..., ys=2a"+....

We therefore have to take the sign — in (5.18). With the abbreviation

7)4
(5.19) = _;p_(x_)._
" p(at?)t
we thus get
(5.20) y1+y2+y3 = —‘T—S .
Then, by (5.13)
(6.21) Y192+ Y2Ys+ysyy = T+5.

Together with (5.14) this enables us to express in terms of 7' any sym-
metric polynomial in ¥,, ¥, and yj,.
From lemma 4 we get
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o @ (x49)7
(5.22) P(Tn+ s)xints = 12 .
névo gt °

Evaluation of the determinants 4, gives

(5.23) Ay = a4+ 4y —5—Byat+4uf3+ 6p202+ 93+ 028,
(5.24) A, = —a5B+ 2y —p3ad + 2940 — 3832 + Bt — 60 B2+ 202 — 3By |
(5.25) Ay = ¥+ a2 —ad—5fpt+dyad+ 6622+ B2+ %,

(5.26) Az = —py+yiat—ad3f34+ 2440 —3p302+ 91— 602+ 2023« ,
(5.27) Ay = —ySx+a28r— 324284y — a3 2+ ot — 6y + 292 — 30,
(5.28) A5 = —(ap°+ B> +ya®) +4(a®f2+ f2y% +y20®) —

= 3B+ py+7*x)+8,
(5.29) Ag = B8+9p2a?—p5—Baft+46y% + 60282+ a3+ B2y .

‘We can now prove the Ramanujan identity (5.1): From (5.28) we get
by (5.12), (5.15) and (5.16)
A= —T(y,+Ya+ys) — 7.

Hence, by (5.19) and (5.20)
p(@")*

4 = 7T —"—
5 27 p(a4%)4

+ 49,

and (5.1) follows from (5.22).
The proof of (5.2) is more complicated. From (5.24) we find

BPA; = y®—5y2— 8y, +y,— 12,
and then, by (5.13),
A4, = y*—8yP— 18y, — 11y, - 5.

Denoting this polynomial by @ we have

9°62 4, = Qyy) -
In the same way we find

Y22 A = Q) ,

Yot d, = QYs) -
Now, by multiplication we get

A,454, = Q1) Q) Qys)

that is, a polynomial of degree 12, symmetrical in y,, y, and y;. From
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(5.20), (5.21) and (5.14) we then conclude that 4,4,4, is expressible as
a polynomial in T, of degree 12 at most:

12
(5.30) A, A4, = 3 a;TV.
j=0

The coefficients a; could of course be computed directly, but the follow-
ing method is simpler. From (5.22) and (5.30) we get

7\21—-4j
(5.31) 21”(7”“)%"2? 7n+3)w”2p Tn+4)am = Za x4~aﬂ%4—.
"= =0 n=0 §=0 p(x)?4-Y

We thus immediately conclude that
Qg = Ayy = ... =05 =0.

The remaining five a;’s can now be found by evaluating the first five
terms in the power series expansions of the two sides of (5.31), and
comparing the coefficients. Thus (5.2) is established.

The proof of (5.3) is quite analogous.

6. The case ¢ =2. For the sake of completeness we add the following
identities with ¢=2, although they are rather trivial:

(6.1) 5’ p(2n)z"

‘P(xz)(:)(::%) (II {(1 +224m~13) (1 4 g24m-11)} _ xII {(1 + 224m=19) (1 4 g24m~ 5)}) ,
m=1

(6.2) 2 p(2n+1)an

n=

II {(1 4 x24m-17) (] +w24m-7)} - xzﬂ { 1 4 224m—23) (1 +m24m—1)}) .

m=1 m=1

o
o(z)®
Proors. By lemma 4
Zoo’p(2n+8)x2"‘+3 = (__ 1)" (p(x4)

n=0 14 (2"2)3 °

Now 0
o = 2 {xz" (12k+1)_x(4k+1)(6k+2)} ,

k=—c0

and using (3.7) we easily find

Jdo = w(x%) ( lz {(1 +x48m—26) (1 +x48m—-22)} — lez {(1 +x48m—38) (l +x48m—10)}) .

Hence (6.1) follows. The proof of (6.2) is similar.
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7. Additional remarks. Atkin and Swinnerton-Dyer [1] have shown
that the quantities g,, for ¢ >3, can always be expressed by certain in-
finite produets. For instance, if =5, we have (this special result was
stated by Ramanujan [13], and first proved by Darling [4]):

o = 9(a) JT {(1—a2om-2) (1 —g2om—)}-2
m=1
gy = —a2q(x5) ﬁ {(1 — @25m-15) (] — g25m-10)}-2

m=1

By (4.17)—(4.20) and (4.16) we thus get four identities with ¢=>5, similar
to the identities (3.1)—(3.3). One of them is:

N

p(5n)x™

I
o

n

”{(1 x5m—4)(1 x57"—1)}"

(%)
()2, 2

-—4) (1 — x5m-l)}2 .

From lemma 4 we now conclude that identities of this kind always exist,
but when ¢ >5 they become much more complicated.
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