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ON THE SEQUENCE [na], n=1,2, ....
SUPPLEMENTARY NOTE TO THE PRECEDING PAPER
BY TH. SKOLEM

THOGER BANG

1. Let x=1 be a real number, and let N, denote the sequence
[e], [2], [3«], ... of positive integers, where, as usual, [x] is the largest
integer less than or equal to #. (The notation &, will be more convenient
for our purpose than the notation &;, N,, ... used by Professor Skolem).
Hence, in the sequel, N, (or simply N) denotes the sequence of the natural
numbers, N, is the sequence of the positive even numbers, etc.

In Section 2 we shall give another proof of Skolem’s beautiful Theorem
4 stating a sufficient condition that N, and N, be complementary
subsets of IV; the condition is also easily seen to be necessary. By Theo-
rem 4 it is possible, for « irrational, to pass from a sequence N, to its com-
plement in N. Using this, we give in Section 3 necessary and sufficient con-
ditions that N ,UN, be IV, and conditions for N, 2> N, We describe also
a simple geometrical connection between the numbers « and § occurring
in the theorems. In Section 4 we show that for rational « and g we get
exactly the same conditions for N, 2 N, as in the irrational case. The
sufficiency of the condition can easily be obtained from the irrational
case by a passage to the limit, while the necessity of the condition needs
an independent proof. Finally, in Section 5 we give a formula for the
asymptotic density of N, NN, which could also be used to prove some
of the previous results, a method applicable to more general sequences
like [nx+ 8], n=1,2, ... . The theorems are numbered in continuation
of those in Skolem’s paper.

We mention a few obvious properties of the sets N : If « is rational,
«=p|q, then N, is periodical modulo p. If a is a positive integer, then
N,2N,,. If the ratio «/g is rational, then N, and N, have an infinity
of common elements, namely [M], where M runs through the common
multiples of x and B. The number « is uniquely determined by the
sequence V.
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2. We shall prove Theorem 4 (slightly strengthened):

The sequences N, and N, are complementary in N if and only if « and f
are irrational and

1 a4+ p1l=1.

In the proof we use the density function u (k) defined for all integers 2
as the number of elements of N, which do not exceed 4. The integer
4,(h) is easily found to be determined by

(2) (h+1)a =1 < p,(h) < (h+1)a?,

and here the sign of equality only oceurs if (A+1)x~! is an integer.
Obviously, g, (h)/k tends to o~ for & — .
That N, and N, are complementary in I is equivalent to

poB) +py(h) = P

for all h. It N, and N, are complementary we therefore have x~1+f-1=1,
which proves the necessity of (1). Asremarked in Section 1 it is necessary
that «/f is irrational, and this together with (1) shows that « and 8
are both irrational. This proves the necessity.

If x and f are irrational, then the sign of equality cannot occur in (2),
and hence we have

(ht Lot =14 (h+ 1)1 < p(h)+ k) < (h+ 1)t + (h+ 1)1

and by (1)

h—1 < u(h)+pgh) < h+1,
which proves that the integer u,(h)+ us(h) equals h. Hence the sets are
complementary. This proves the sufficiency.

When « and f are rational and satisfy (1), we can write them as frac-
tions p/q and p/r, where p, ¢ and r are relatively prime. Just as above
this implies w,(h)+ pu4s(k)="h, except for the case when p divides A+ 1.
Thus N, and N, are “almost complementary” in the sense that they are
complementary except for all multiples of p, which are contained in
both of them, and the integers immediately preceding these, which
belong to none of them.

3. Let «’ denote the number related to « by the equation
o lta'-1 =1,

Then («')'=o. Theorem 4 states that the sets IV, and N, are comple-
mentary for irrational «.
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Professor Skolem gives (Theorem 8) the conditions that N, and N, be
disjoint. The result can be stated in the following way:

The sequences N and N, are disjoint if and only if B and y are irrational
and there exist positive tniegers b and ¢ such that

(Bb1) = yc, that is, bfl+cyl=1.

Hence, the condition states that the sets can be enlarged to comple-
mentary sets Ng-1 and N,

The result can be expressed in a simple geometrical way by means of
the lattice of points (m, n), where m and n are positive integers (cf.
fig. 1). The segment connecting « on
the X-axis with &’ on the Y-axis pas- ,.4
ses through the point (1, 1). If 8 and
y are irrational, the sets Ny, and N,
are disjoint when, and only when, the
segment connecting the points § and y
on the coordinate axes passes through
a lattice point in the positive quadrant.

If we replace the sets by their com- »-s
plements, we get the following state-
ment:

If x and § are irrational and greater Fig. 1.
than 1, then the necessary and suffi- ,
cient condition that N,UN,=N is that there exist positive integers a
and d such that

(«’a"1) = §'d-1, thatis, a(l—-at)+d(1-6"1)=1.

By replacing one of the sets by its complement we get

THEOREM 9. If & or y s irrational, then the necessary and sufficient
condition that N, 2 N, is that there exist positive integers a and c such that
(3) («'a=1) = pcl, thatis, a(l—o"!)+cyl=1,

The condition is illustrated in fig. 1. To a given « there is a finite
number of possible values of @ and an infinite number of possible values
of ¢. The condition obviously implies x <y.

Suppose that (3) is fulfilled, that a, is a divisor of a, and that c, is a
divisor of ¢. Then we have ‘

(4) N.2 N(«x’arl)’ 2Npoy = ch—l 2 chrl = Nr *
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We are going to prove that the sets in (4) are the only ones between N,
and IV,.

TaeorEM 10. Suppose that N, 2 N, where « and y are irrational, t.e.,
that (3) is satisfied. T'hen the numbers ¢ for which N, 2 N, 2N, are of two
types, viz. e=(x'a,1), where a, divides a, and & =yc,™, where ¢, divides c.

The two cases correspond to ¢ <yc~! and ¢ yc~?, respectively.
The inclusion N, 2> N, means that there exists an equation

p(l—a™) +qet =1,
and N, 2 N, means that there exists an equation

r(l—et) + syl =1.
Elimination of ¢ yields

pr(l—oa™l) + gs:yt = q+r—gqr,

and this can only be compatible with (3) when the right-hand side
g+r—gqr is positive. Thus we get ¢g=1 or r=1, and in both cases
g+r—gr=1. In the case ¢<yc~! we get e=(«'p~1)’ and pr=a, which
shows that p=a, divides a; in the case ¢2yc~! we get ¢=ys1 and
gs=c, which shows that s=¢, divides ¢. Thus the theorem is proved.

As a numerical example consider IV, with « =2} (cf. Skolem’s paper).
The complement of N, is Ny, f= 2+ 2%, and the sets NV s disjoint to N,
are the sets with f=(2+ 2!)%, where % is an integer. The sets NV , contai-
ned in &, are of three types, viz. y=2%%, y =(1+2})A, and y = (4 +3-2)%
(corresponding to the three possible values a=1, 2 or 3 in the formulas
above). The number y = (4 + 3-2!) - 6 corresponds to =3 and ¢ =6 above
and we get as intermediate sets

N(ggoh) .2

Np2N, 02 {
¥ N(sigoh).s

} 2 N(g551).6-

4. All the equations occurring in the preceding theorems associate with
an irrational x irrational 8,  or 6. In the case of rational «, 8, y and ¢
the situation is more complicated, as already mentioned in Section 1.
But it is worth-while to point out that Theorem 9 is valid also in the
case of rational «, that is, we have the more general theorem:

TeEOREM 11. If & 48 greater than 1, then N, 2 N, if and only if there
exist postiive integers a and ¢ such that

(3) (6'at) =yect, thatis, a(l—al) +cypl=1,



ON THE SEQUENCE [na], n=1,2, ... 73

We need only prove the theorem for rational « and y. The sufficiency
of the condition can easily be proved by a passage to the limit from the
irrational case. Indeed, if « tends decreasingly to «,, then N, converges
to N, in the sense that every finite section of N, is identical with the
corresponding section of N, when « is sufficiently close to «,. Suppose
now (3) is satisfied by rational «, and y,, then «, and y, can be approxi-
mated simultaneously by decreasing sequences of irrational « and y which
satisfy (3) with the same a and c. Hence &¥,2N,, and in the limit we
get N, 2N,.

The necessity of the condition needs an independent proof. In the
following we suppose that N, 2 N..

First, if « is an integer greater than 1, then it is easy to see directly
that y has to be an integer (moreover, a multiple of «; incidentally, this
is in accordance with the equation (3)).

Let « and y be written as fractions with a common numerator, « = p/q
and y = p[r, where the largest common divisor of p, ¢ and r is 1. We shall
prove that p—gq and r are relatively prime. Put d=(p—gq, r). Then p/d
is a multiple of p/r and a multiple of p/(p—gq). Hence, using N = N,

y::
that is, N, S N,,, we get

Np/dgN

p/rnN = Np/qup/@-q)f

Plp—9) =

and, as remarked at the end of Section 2, this is the arithmetic progres-
sion N,, where h=p/(p, q) is an integer. From the preceding it follows
that d divides p, and since d also divides p—gq and r, we have d=1.

The inclusion N, < N, means that to each n there exists an integer
m,, such that [ny]=[m,«]. Hence

ny—l and m,x-—1

have the same sign for all integers ! (if the sign of 0 is defined to be +).
Inserting y and & we get that

np—lr and m,p-lg

have the same sign for all » and all /. Thus using the absolute values of
these numbers as the positive integers @ and ¢, we get

a(l—at) + eyt = |(np—Ir)(L—g/p) + (m,p—1g) r/p|
= [n(p—9) + (my—=0)r|.
For » fixed, m, —! can assume all integral values. It is therefore pos-

sible to determine n and [ such that the right-hand side equals the largest
common divisor of p—g¢ and 7, that is 1. This proves the theorem.
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In the rational case the integers a and ¢ in (3) are not uniquely determi-
ned, and therefore we cannot deduce a theorem analogous to Theorem 10.
For instance, «=12/11 and y=12

satisfy (3) for all positive integers a

/ \ / \ and ¢ such that ¢+c¢=12, and hence
N,2N,. The numbers & for which
// N,2N,2N, are e=12[p, 1=p=11;
the way in which they are included

Fig. 2. in each other is represented in the

following graph (fig. 2), where a line
from p to ¢ (directed to the right) indicates that Ny, 2 Ny.

5. The asymptotic density é of a set of positive integers M is defined
as the limit of u(k)/h, where u(h) denotes the number of elements from
M not exceeding h. We have already remarked in Section 2 that
O(NV,) =01

We shall now consider §(V,nN,). Following Skolem, we define, for a
positive integer z, the number x, as 2x~! reduced modulo 1, so that
0<z,=1. In the same way y, is defined as 25~! reduced modulo 1, so
that 0<y,<1. Then ze N, means that there exists an integer % such that
2=<hx<z+1, that is

h—ol <201 £h, or l-al<a2, 1.

Hence, z€ N,NN,; means that the point (z,, y,) lies in the rectangle B
in the X Y-plane, defined by

l-axl<ax 21, 1-f1t<y=s1.

On the other hand, each positive integer z yields a point (z,, ,) in the
unit square 8: O<x <1, O<ys1.

The points (2x~1—h, z8-1—k), where 2z, h and k are integers, form a
vector modulus ¥V, and the points (x,, y,) belong to ¥'nS. Well-known
theorems on vector modules state that the points (z,, ¥,) are equidistri-
buted on the intersection between S and the closure V of V. Hence we

have —
m(VnR)
60 =0(N,NnNg) = m (708’
where m(A4) is the measure of the point set 4, this measure being defined
in a proper way, depending on the nature of the closed vector modulus V.
There are three possibilities:
I. If a-1, ! and 1 are rationally independent, then V is the whole
plane. In this case m(A4) is the area of 4, and we get
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O(N,NNp = 1/af = 71871,

that is, d is the product of the densities of N, and N.
II. If there exists one (and only one) relation

(5) ax~1+ bt = ¢,

where a, b and ¢ are relatively prime integers, ¢ and & not both equal
to 0, then ¥ is the collection of equidistant lines

ax+by =t t=0,+1, +2,....

In this case m(4) is the total length of the line segments of ¥ nA.

In particular, if 5=0, that is, « rational, then ¥V is a set of vertical
lines, x=t/a (¢ integral), and again we get d=1/xf=nx"1f-1, that is, the
product of the densities of NV, (1)
and N, The same result is valid ”
if B is rational.

In the general case of II, «
and B are both irrational, and
the lines have the slope —a/b;
the figure shows the case where
the slope is negative. Let the
distance of two neighbouring li-
nes be d. Then

_dm(VnR) (1-@1-p
d-m(VnS) (20)
and here the numerator is easily Fig. 3.

seen to be equal to the area

spanned by the line segments inside R and the vertices (1—«-1, 1—8-1)
and (1,1) (the area hatched in fig. 3), while the denominator is seen in
the same way to be the area of S, that is 1. A calculation yields

(6) 8= aiﬁ“&%(g”[g]) (%"[ED ’

and this expression is also valid when the lines ¥ have a positive slope.
Since « and g are irrational, the second term of (6) does not vanish, and
we have d < 1/xf or § > 1/« according as @ and b have the same sign or
opposite signs.

Because of (5) and the irrationality of « and g, putting d=0 in (6),
we can again deduce the necessary condition, given in Theorem 8,
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that N, and N, be disjoint. By the same method, it follows that N, 2 N,
only if 6=4-1, and a calculation gives again condition (3).

II1. If there is more than one relation of the form (5), then « and g
are rational. The modulus V consists of isolated points, and V=7V,
the measure m(4) is obtained by counting the points in V'nA4.

In this case we cannot give a simple formula for §. In some examples
the expression (6) seems to be related to the resulting é (the identity of
the conditions in Theorems 9 and 11 points in the same direction), but
the numbers ¢ and b in (5) are not uniquely determined in this case,
and it seems difficult to find a general rule.
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