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ON CERTAIN DISTRIBUTIONS OF INTEGERS
IN PAIRS WITH GIVEN DIFFERENCES

TH. SKOLEM

1. A study of the structure of some triple systems of Steiner (cf. [2])
led me to consider the following problem: Is it possible to distribute the
numbers 1, 2, ..., 2% in » pairs (e,,b,) such that we have b,~a, =r for
r=1,2,...,n?

In the sequel, a set of pairs of this kind is called a 1, + 1 system because
the differences b,—a, begin with 1 and increase by 1 when r increases
by 1. One finds very soon that such a system does not always exist.
In the simplest case n=1 we have only the two numbers 1, 2 which
quite trivially form a pair that is a system of the kind considered. But
already in .the case =2 there is no 1,+1 system. Indeed the only
distributions of 1, 2, 3, 4 in two pairs are

(1,2) 3,4) (L,3) (2,4 (23) (1,4)
with the corresponding differences
1,1 2,2 1,3

so that we never have just the differences 1, 2.
Also for n=3 one easily finds that no 1,+1 system exists. However,
for n=4 there is again such a system, namely

(6,7) (1,3) (2,5) (4,8).

Thus the question arises: For which n does a 1,+1 system of pairs
exist ? The complete answer is given by the two theorems:

TrEOREM 1. If n=2 or 3 (mod4), no 1,+1 system exists.
THEOREM 2. If n=0 or 1 (mod4), then a 1,+1 system always exists.

Proor or TarorEM 1. I give here a very short proof due to Professor
Th. Bang, my own original proof being somewhat longer. If the pairs
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(e, b,), r=1, ..., n, constitute a 1, + 1 system of the numbers 1, ..., 2n,
then we have the equations

b,—a,=r, r=12 ...,n,

whence by summation
2b,—-2a, = nn+1).

On the other hand, since the collection of the numbers a, and b, is the
gset 1,2, ..., 2n, we also have

2b,+2a, =n(2n+1).
Addition of the two equations yields
2b, = in(5n+3),
which is an integer only when n=0 or 1 (mod4).

Proor or THEOREM 2. Let first n=0 (mod4). It will then suffice to
give a general description of a 1,+1 system for an arbitrary »=4m.
Such a description is the following: The system of pairs consists of

1) all pairs (4m+7, 8m—7) for r=0,1, ..., 2m—1,

2) the pairs (2m+1, 6m) and (2m, 4m — 1),

3) the pairs (r,4m—1-7) for r=1,2, ..., m—1,

4) the pair (m, m+1),

5) the pairs (m+2+r,3m—1-7) for r=0,1, ..., m—3.

The pairs 1) give all the even differences 2,4, ..., 4m. The two odd
differences 2m — 1 and 4m —1 are obtained from 2). The least difference
1 is got from 4), the differences 3, 5, . . ., 2m — 3 from 5) and the remaining
odd differences 2m+1, ..., 4m—3 from 3).

Now let =1 (mod4). As pointed out by Professor Bang it is possible
also in this case to give a general description of a 1, + 1 system which is
quite analogous to that given by me above for the case n=0 (mod4).
Indeed, setting n=4m + 1, the system consists of

1) all pairs (4dm+2+7,8m+2—~7) for r=0,1, ...,2m—1,
2) the pairs (2m+1, 6m+2) and (2m+2, 4m+1),

3) the pairs (r,4m+1—r) for r=1,2, ..., m,

4) the pair (m+1, m+2),

5) the pairs (m+2+r,3m+1—r) for r=1,2, ..., m—2.

The pairs 1) give all even differences 2, 4, ..., 4m. The two odd diffe-
rences 2m—1 and 4m+1 are given by 2). The least difference 1 is ob-
tained from 4), the differences 3,5, ..., 2m—3 from 5), and the odd
differences 2m +1, ..., 4m—1 from 3).
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In the cases n=0, 1 (mod4) the number of 1, + 1 systems of pairs built
from the integers 1, ..., 2n will probably increase indefinitely when n»
increases to infinity, but I will not here make any attempt to treat this
question.

2. I shall now make some remarks concerning the extension of this
problem to the whole number series. It is clear that in this case the
existence of a 1,+ 1 system is quite trivial. More generally it is obvious
that I, +m systems exist, that means systems of disjoint pairs such that
the corresponding differences are the numbers [, l+m, I +2m, ... . The
reason for my treatment of these systems is that some quite peculiar
theorems may be proved in this connection.

The simplest procedure for constructing a 1,41 system of all the
integers is as follows. The first pair may be (a,, b,), where a, is 1 and
b, is 2. Then the nth pair (a,, b,) is built by recursion by letting a, be
the least integer which is different from all ¢, and b, forr=1,2, ..., n—1
and setting b,, =a, +n. I list here the first 29 of these pairs:

(1,2) (3,5) (4 7) (8,10) (8,13) (9,15) (11,18) (12, 20) (14, 23)
(16, 26) (17, 28) (19, 31) (21, 34) (22, 36) (24, 39) (25, 41) (27, 44)
(29, 47) (30, 49) (32, 52) (33, 54) (35, 57) (37, 60) (38, 62) (40, 65)
(42, 68) (43,70) (45,173) (46, 75).

I was a little surprised when I discovered that these pairs can be given
by a simple formula. Indeed we have

ay = [F(1+5Yn], by = [3(3+54)n],

where [£] as usual denotes the greatest integer <&. This will be proved
in Theorem 3a.
I shall first prove some other statements. Let « be the positive root
of the equation
ex—1 =0,
thus o =3%(1+5%), a2=%(3+5%). Then the propositions are:

1. If n=[am], then [xn]=[x®m]—1.

2. If n=[acm]+1, then [oxn]=[x2m]+ 1.

3. If n=[am], then [x(n+1)]=[xn]+2.

4. If n=[oom]+1, while [x(m+1)]=[am]+2, then [x(n+1)]=[an]+1.

Proor or 1. From n=[«m] it follows that
n?f—mn—m? < 0, n+1)2—m(n+1)—m? > 0,

where the inequality to the right may be written
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n2—mnun—me—m+2n+1> 0.
Hence

(n+m—=12—nn+m—-1)—n2 = —n2f+mn+m?—2m—-n+1 < 0,

because the left-hand side equals —n2+mn+m?+m—2n—1—3m+n+2,
and —n?+mn+m2+m—2n—1 and —3m+n+2 are both negative.

Further
(m+mP2—n(n+m)—n: = —n2+mn+m? > 0.

Thus it is proved that

n+m—1 = [a?m]—1 = [an].

Proor oF 2. From n —1=[am] it follows that
(n=12%-m(nr—-1)—m? < 0, nt—mn—m? > 0.
The inequality to the left is

n2—mn—m24+m—2n+1< 0.

We have
(n+m)32—n(n+m)—n? = —n2+mn+m? < 0.

Further

(r+m+12—nn+m+1)—n2 = —n2+mn+m2+2m+n+1
= —ni+mn+mi—-m+2n—1+3m—n+2,

which is positive. Thus we have proved that

n+m = [a2m]+1 = [an].

Proor oF 3. The statement may be written
[6*m]+1 = [x(n+1)]
under the same hypothesis as in proposition 1. Now
(m+m+1)2—(n+1)(n+m+1)—(n+1)2 = —n2+mn+m2+m—2n—1,
which (see the proof of 1.) is negative. On the other hand
(m+m+22—n+1)(n+m+2)—n+1)2 = —n2+mun+m2+3m—n+1,
which is positive because —n%2+mn+m2>0 and 3m—n+1>0. Thus

n+m+1l = [o?m]+1 = [x(n+1)].

Proor or 4. The statement may be written

[62m]+2 = [x(n+1)].
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We have the two inequalities expressing the hypothesis of proposition 2
and further
(m+12—(m+1)(n+1)—(m+1)? < 0,
. (n+2)2—(m+1)(n+2)—(m+1)2 >0,
that is,
w—mn—m2—3m+n—-1 < 0, nt—-mn—m2—-4m+3n+1>0.
Now we have

(n+m+12—(n+1)(n+m+1)—(n+1)2
= —n24+mu+m2+m—-2n—-1 < 0

because — n? 4 mn +m?2 < 0 (see the proof of 2.) and m — 2n — 1 < 0. Further,

(m+m+22—(n+1)(n+m+2)—(n+1)2

= —n24+mnun+m2+3m—-n+1> 0.
Thus

n+m+1 = [6?m]+2 = [x(n+1)].

It is now easy to prove the following theorem:

TrHEOREM 3a. Every positive integer ts of one and only one of the two
forms
[xn], [o?n],
where n denotes some positive integer. Further the pairs obtained by the
procedure explained above are just the pairs ([xn], [x3n]).

Proor. My first proof of this theorem was based on the preceding
four lemmas. However, a reproduction of this proof here is superfluous
because it is easily verified that the second statement in Theorem 3a
is a special case of Theorem 4, which is proved below. Then the first
proposition in Theorem 3a is proved by the following simple argu-
ment: Since every integer is of one of the two forms [an] or [o«%n], the
least integer which does not belong to any of the pairs ([xr], [«%r]),
r=1,2, ..., n—1, must occur as the least integer in the pairs
([xs], [o28]) for s=m, n+1, ... . It is then evident that a, is just this
number, which means that the pairs obtained by the recursive procedure
explained above are just the pairs ([an], [a2n]).

A more general theorem is:

THEOREM 3b. Let m be an arbitrary natural number and I one of the
numbers 1, ... m. Further let N, be the set of integers of the form

2(m — l)]

m

_ _ : _'m—l
fn) = [3(2 m+(m2+4))(n - >+
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and N, the set of integers of the form

g(n) = |3(2+m+ (m2+ 4)}) (n_mﬁ;'l) +2(7r:n—l)] .

Then N, and N, are complementary subsets of the natural number series N
and the pairs (f(n), g(n)) constitute a I,+m system.

I omit the proof, which can be performed by considerations analogous
to those in the proof of Theorem 3a.

3. The relation between two sets of the forms [xn] and [8n] may be
very different in different cases. I should like to give an example, where
one of the two sets is contained in the other. Of course this phenomenon
is trivial in the case that «/8 or B/« is an integer. It is worth noticing,
however, that it can also happen when «/8 is irrational, which is shown
by the following example: Every integer of the form [(1+ 2})n] is also
of the form [2}n]. Indeed, I shall prove the general validity of the

formula

[(1+2H)m] = [2}1]],
where

P=[@ +1)m+1],

so that [ is the integer nearest to (274 + 1)m.
Let n=[2tm], so that we have

22m=n+e, O<e<l.

Then
l=[m+3(n+e)+1].

I take first the case n=2v. Then

Il =m+y
so that
2 = 2tm 2ty = 2w 27in = m+ (2 —1)m+ 2740,
Since
m > 27%n,
we obtain
2l >m+1-2Hn+27tn = m4n.
Since
2tm < n+1l and 2t < m,
we have

2l <cn+142ty =n+1+2%n < m+n+1

so that in this case
[24] = m+n = [(1+2H)m].

Then let n be odd=2v+1. We obtain
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=m+r+1,
whence
2 = 2t 2t i(n+1) = m+ 2 -)m+2 (n+1)
<m+(1-2Hn+1)+2tn+1) =m+n+1,
and on the other hand
28 > m+n
because
2tm >n  and  2%m+41) >m.
Hence in this case as well we have
(28] = m+n = [(1+28)m] .

It is quite curious to observe that whereas every integer of the form
[(1+2%)n] is also of the form [2¢n], no integer of the form [(2 + 2%)n] is
of the form [2¢n]. Indeed, the two latter sets of integers, those of form
[2!%] and those of form [(2+2%)n], are two complementary subsets of
the natural number series. (See Theorem 3b for {=m =2 or Theorem 4.)

It is clear that these considerations can be extended in different
directions. For example, one might ask if it is possible, also for m > 2,

to find m different irrational numbers «, ..., «,,, such that
[“1”’]5 e ey [(xmn] ’
for n=1, 2, ... in infinitum, furnish m mutually disjoint sets with the

whole number series as their union. I shall show below (Section 7) that
the answer to this question is negative.

4. Instead of pairs with given differences one might consider triples
(@, by, ¢,) such that the second differences a, —2b,+c, for n=1,2, ...
have given values. I mention an example.

Let (ay, by, ¢1) be (1, 2, 4) so that the second difference here is 1, and
let a,, b, ¢, be determined recursively by letting a, be the least integer
different from all e, b,, c,, where r<mn, b, the least integer different
from all a,, b,, ¢, with r<n and from a,, while c, is so chosen that

a,—2b,+c, =n.
The first twelve of these triples are

(1,2,4) (3,5,9) (6,7,11) (8,10, 16) (12, 13,19) (14, 15, 22)
(17, 18, 26) (20, 21, 30) (23, 24, 34) (25, 27, 39) (28, 29, 41)
(31, 32, 45).

I have attempted to find a general formula for the nth of these triples
by the aid of the operation [], buth without success.
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With more success I have treated the triples obtained by the following
recursion. Let a;=1, b;=2, ¢; =3. Whenever a,, b,, ¢, are already deter-
mined for r<n, a,,, is chosen as the least integer different from all
those a,, b,, ¢,, then b,,; is chosen as the (n+1)th integer different
from all the a,, b,, ¢, and from a,.,, while ¢, is put =b,,,+n+1.
The first eight of these triples are

(1,2,3) (4,6,8) (5, 10,13) (7, 14, 18) (9, 17, 22)
(11, 21, 27) (12, 25, 32) (15, 29, 37)

Here I have found the general formulas:

Ggn = [3B+21Yn + }(—3+211)], @y = [3(B+21H)n + §.21%]
b, = [3(3+21Hn] — 1, ¢, = [}(8+21Yn] + n—1.

5. My colleague I. Johansson pointed out to me that it could be
seen almost immediately that IV, and IV, are disjoint, V; being the inte-
gers [an] for integral n, N, the integers [fn], if « and B are positive
irrational numbers such that

a"l4p-1 =1.

Indeed, the proof is simply this: Let us assume that integers m and »
exist such that I=[aem]=[fn]. Then we have

l<am<I+1, I<pm<li+l1,

or all<m < at(+1), BU<mn < prl+1),

whence by addition, taking into account that x—1+-1=1, we obtain
l<m+mn<I+1, which is impossible.

By the way one observes at once that this can be generalized by
putting a1 flmgt
and here supposing only that c is a positive integer. Indeed this assump-
tion leads by the same development to the inequality

l<em+n) <l+1

which is impossible in integers I, m, =, c.

One might now perhaps be tempted to believe that the last sufficient
condition for the non-existence of elements common to N, and N, also
is necessary. However, the situation is not so simple, as can be seen
from the fact mentioned in Section 3 that all numbers [(1+2})n] are
also numbers [2¢n], whereas no number of the last form is of the form
[(2+2Y)n]: The sum
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1 1

- =91
1+ 2% + 242t

is not a number of the form 1 divided by an integer. Indeed, a still
weaker sufficient condition, which is also necessary, is given in Theorem 8.

6. Some theorems can suitably be added. In these N, N; and X,
retain their earlier meanings.

THEOREM 4. If x~14-f-1=1, then N, and N, are complemeniary sub-
sets of N.

Proovr. Since « and § shall be >0, they are both >1. We may also
suppose that 1<x<2. Indeed if « and § were both >2, we would
obtain a~!+f-1<1. It is then evident that always

[x(n+1)] = [en]+1 or [axn]+2.

In order to prove that every integer is either of the form [x%] or of the
form [fm] I have to show that when

[6x(n+1)] = [xn]+2,
then
[en]+1 = [fm]
for a certain integer m. Let

o« = 142, O<x<1l,
and let & be a positive integer. Then for n=[k/x]

[xn] = [n+nx] = n+[nx] = n+k—1

because
nx <k < nx+x < xn+l

so that obviously (] = k-1
nx] =k—1.

On the other hand
[x(m+1)] = n+1+[(@+1)] = n+1+k,

since k< (n+1)x<k+1. It is clear that, for k=1, 2, ... we have just
the jumps by 2, which the value of [xn] makes when n increases by 1.
Now, since

1
ﬂ=~—= =]_+-’
x—1 x x

we get;
[kB] = k+[k[x] = n+k = [an]+1.

Math. Scand. 5. s
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Thus, when [« (n + 1)]=[xn]+ 2, then the intermediate number [an] + 1
has the form [kf].

TrEOREM 5. If 1, &1, B~ are linearly tndependent (relative o the field
of rationals), then N and N, have an infinite number of common elements.

Proor. It is again clear that we can assume « and > 1, because if
o<1, every natural number is of the form [an]. It follows from well-
known theorems in the theory of diophantine approximations that
infinitely many triples of integers /, m, n exist such that

—al < a"ll—m < 0, —f1<pU-n<0,

whence l<am<l+1, l<fn<l+1,

[em] =[fn] =1.

THEOREM 6. Let & and 8 be irrational numbers, but 1, a=1, -1 lincarly
dependent tn such a way that in the equation

so that

anl+bp1 = ¢, ¢ > 0, a, b, ¢ integers ,

a and b have opposite signs. Then N, and N, have an infinite number of
common elements.

Proor. For a positive integer z let x, and y, denote the numbers
2671, z8~1 reduced modulo 1, so that 0<w,<1, O0<y,<1l. Then the
points (z,,y,) lie on a certain number of straight line segments
crossing the unit square. All these segments have the same slope,
namely —a/b, and one of them ends at the point (1,1). The points
(%,, y,) lie everywhere dense on the segments. Therefore infinitely many
(#,, ¥,) lie in the region

I—axtl< 2z <1, 1-fl<y<1,

which leads to the same conclusion as in the case of the preceding theo-
rem.

TEEOREM 7. If the irrational numbers « and B are connected by an
equation
ax~1+bf-1 = ¢, a>0,b>0,¢>1, a,b,cintegers,

where the greatest common divisor of a, b and ¢ equals 1, then N, and N,
have infinitely many common elements.

Proor. Just as before, the points (z,, ¥,) lie on a number of line seg-
ments crossing the unit square, all of them possessing the same slope
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—a/b. Since the points (w,, y,) lie everywhere dense on the segments, it
follows that infinitely many of them are in the rectangle

l-at<2<l, 1-p1l<y<1,

if it is shown that one of the lines enters into this region. This, however,
is very easily seen, because either ax~1>1 or 681> 1, since ¢=2. Thus
we have either «~'>a! or f-1>b-1, while the line segment A lying
closest to the point (1, 1) connects the points (1—a~1, 1) and (1, 1—-56-1).
Therefore 4 must enter the said rectangle.

On the other hand it may be noticed that, if the irrational numbers «
and g are connected by the equation

ax~l+bp1 =1,

where the integers ¢ and b are >0, then N, and N, are disjoint. This is
seen by the fact that XN, is contained in the set of all [xa~1n] and N,
contained in the set of all [fb—1n]; for in Section 5 we have remarked
that the two sets [x,n] and [, n] are disjoint when

a7ty =1,
From all this follows

THEOREM 8. A necessary and sufficient conditton for the sets [an] and
[Bn] to be disjoint is that x and f are connected by an equation

ax~t+bg1 =1,

where a and b are positive integers.

7. As an application we may prove the nonexistence of 3 irrationals
«, 3, ¥ such that the corresponding sets N,, N,, N; are mutually disjoint
(&, being the set of all [an], ete.). Indeed, if &, #,  should possess this
property, it follows from Theorem 8 that we should have 3 equations

axt+b,8 1 =1, @yl t=1  azfl4+by 1l =1
with positive coefficients a, and b,, 1=1, 2, 3. The elimination of y
between the two last equations yields
aabgot —aghyft = by—b,,

where the coefficients have not all the same sign. Therefore the last
equation is independent of a,x~1+b,6~1=1 so that «, §, y must all be
rational.

If the operation of taking the greatest integer <¢ is iterated, we may

5*
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of course get expressions furnishing an arbitrary number of disjoint sets
of integers, For example, the three expressions

[x[xn]], [x[a2n]], [x3n] ,

where « = 4(1+ 5%), yields three subsets of N which are mutually disjoint
and have N as their union.

8. The theorems in the present paper concerning the sets [xn] are
extended to the more general sets of the form [xn+f] in a paper to
appear in Norske Vid. Selsk. Forh., Trondheim.

See also the following paper by Bang [1].
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