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THE DECOMPOSITION OF A CONTINUOUS LINEAR
FUNCTIONAL INTO NON-NEGATIVE COMPONENTS

J.D. WESTON

We consider a real topological vector space X in which there is dis-
tinguished a set C' such that C + C < C and «C <= C for every non-negative
scalar «. Defining

u<v to mean v—uecC,

we get a partial ordering of X, in a slightly generalized sense: the rela-
tion < is reflexive and transitive, but may not be antisymmetric. An
tnterval in X is a set that contains # whenever it contains % and v with
u<x<v. A linear functional f on X is defined to be non-negative if its
values on C are non-negative; that is, if f(x) >0 whenever z>0. A class
F of linear functionals is defined to be equicontinuous if the set

Up = {&|f(x)<1, all feF}

is a neighbourhood of the origin. By a decomposition of a class F of
linear functionals, we mean a class F* of non-negative linear functionals
such that every f € F is of the form f, —f,, where f,, f, € F*.

A result obtained for normed spaces by Grosberg and Krein [3], and
for locally convex spaces in general by Bonsall [1], can be stated as
follows: in order that every equicontinuous class of linear functionals on X
should have an equicontinuous decomposiiion, it is necessary and sufficient
that X should have arbitrarily small neighbourhoods of the origin which
are intervals.

In this note we examine the possibility of decomposing a single linear
functional into continuous non-negative components. We find a neces-
sary and sufficient condition for this, and our method yields a simple
proof of Bonsall’s result.

If f is of the form f, —f,, where f, and f, are continuous non-negative
linear functionals, then there is a convex neighbourhood U of the origin,
for example the set {u | f;(u) <1, f(u) <1}, such that f(x)<1 whenever
0<x<wuand ucU. We show that, on the other hand, the existence of
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such a neighbourhood of the origin, corresponding to a continuous
linear functional f, is sufficient to ensure that f has a continuous decom-
position.

Let f be a continuous linear functional, and U an open convex neigh-
bourhood of the origin such that f(x) <1 whenever 0 <x<wu and ueU.
If f(u) <0 for all ueC, let f;=0. Otherwise, C has a point u, such that
f(ue)=1; in this case, let S be the set of all points « for which there
exists x such that 0<z<w and f(z)>=1. Evidently, S is a convex set
which contains %, and does not meet /. By the Hahn-Banach theorem,
there is a linear functional f; such that fi(z) <1 when e U and f;(x)>1
when xze8 (cf. [2], p. 71]). The first of these inequalities shows that f;
is continuous. The second shows that f, is non-negative: for if ueC
then w,+ou € S for all x>0 (since 0<uy<uy+ow and f(ug)=1), and

therefore
fi(we) +ofy(uw) =1 forall «=0,

so that fj(u)>0. Let f,=f,—f. If f(u)>0 for some weC, and «=1/f(u),
then 0 <ou and f(ou)=1, so that aueS and therefore «f;(u)=>1; thus
fi(w)=f(u). This inequality holds for all u€C, since f, is non-negative;
hence f, is non-negative. We thus have the required decomposition.
Now suppose that X is locally convex. If there are arbitrarily small
neighbourhoods of the origin which are intervals, and F is an equicon-
tinuous class of linear functionals, we can assume that U, in the argument
we have just used, is contained in an interval which is contained in U
(thus ensuring that f(z)<1 whenever 0<a<u, ucU, and feF). The
functionals f; then form an equicontinuous class, and so we get an equi-
continuous decomposition of F. On the other hand, suppose that an
equicontinuous class F has an equicontinuous decomposition F*, and let
V be a symmetric neighbourhood of the origin such that V<Upg,;

suppose that
u<Ler<y, where u,ve}V,

i fae FH, with fi—foeF.

Hl@) <filk) <3 and  —fie) <fy(—w) < §,

so that (f;—f)(®)<1, and therefore xeUy. This shows that Uy con-
tains an interval which contains V. By the Hahn-Banach theorem,
however, every open convex neighbourhood of the origin is of the form
Uy, where F is equicontinuous (in fact F={f|f(x)<1, all z€Up}).
Thus if every equicontinuous class of linear functionals has an equicon-
tinuous decomposition then X has arbitrarily small neighbourhoods of
the origin which are intervals.

and that
Then
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