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BESICOVITCH ALMOST PERIODIC FUNCTIONS
IN ARBITRARY GROUPS

ERLING FOLNER

For every p=1 Besicovitch [1] has introduced a class of generalized
almost periodic functions of a real variable, the class of Br-a.p. functions,
which has many properties in common with the class L? of measurable
p-integrable functions with period 2z. Thus, in particular, the Riesz-
Fischer Theorem holds for the B2-a.p. functions. A trigonometric series
Y A,e™* is the Fourier series of a B%-a.p. function if (and only if)
2'|4,|? is convergent. It is easily seen that by simple modifications of
Besicoviteh’s procedure one can obtain various other classes which have
the same properties. Thus, when we consider Besicovitch’s problem in
an arbitrary group, we cannot expect a unique solution, and probably
any general solution will be somewhat artificial.

The aim of the present paper is to prove the existence of a general
solution of the problem, valid for any infinite group &; and for evident
reasons we need not consider the problem in finite groups. A type of
generalized almost periodic functions in an arbitrary group was intro-
duced in [3]. These functions were called Weyl almost periodic (W-a.p.)
functions on account of their analogy with the usual Weyl almost
periodic functions. What we need now is a wider generalization of al-
most periodicity. To avoid misunderstanding we remark at once, that
when @ is the additive group of real numbers, the class of usual B?-a.p.
functions cannot be obtained by our method of definition for any p= 1.

Our definition of the Besicovitch almost periodic functions depends on
the choice of a sequence E,, K,, ... of subsets of G subject to certain
conditions, and this choice is not unique. The following lemma indi-
cates the conditions and asserts that a choice of E,, E,, ... according
to the conditions is always possible. By a symmetric subset of G we
mean a subset # for which F-1=£.

LEmMa. Let @ be an arbitrary infinite group. Then there exist denumer-
ably many disjoint symmetric subsets By, B, ... of G with the property
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that to arbitrary, finitely many elements ay, ..., ay from @ and an ar-
bitrary positive integer h there exists an element x such that a,xa, B, for
n,m=1, ..., N.

Proor. Let y; be the smallest ordinal number belonging to a well-
ordering of G' and let X; be the cardinal number of G. By S we denote
an arbitrary finite subset of G. The set of all such § has also the cardinal
number X;. We consider denumerably many copies of each § and dis-
tinguish them by an upper index 1, 2, .... We denote an arbitrary S
provided with an arbitrary upper index by 7'. The set Z of all such T
has also the cardinal number R8;. We choose a well-ordering

Ty,Ty ....,T, ... (¥ <vwg)

v

of Z with the ordinal number ».

Let F be an arbitrary symmetric subset of G' with smaller cardinal
number than @, and let 7' be S={a,, ..., ay} with some upper index.
By 7'(F) we understand a set of the form

Fua,za,|a,a,cS}tu{a,21a, | a,,a, S},

where the element x is chosen so that none of the elements @,za,, (and
hence none of the elements a,'x~'a, ) are in F. Thus x has to be

chosen outside the set N

U an_lFa’m—l k4
n, m=1
and since this set has a smaller cardinal number than @, this choice is
always possible. Like F, the set 7'(F) is symmetric, and the two sets
are either finite or have the same cardinal number. Furthermore,
TF)>F.

On account of the definition of 4, every ordinal number » <», corre-
sponds to a cardinal number <Rg Hence, by transfinite induction, we
can define for every » <v; the symmetric subset #, of & so that F is
the empty set, 7(F,)=F,,, for all »<vg, and F,=U,_,F, for all limit
numbers v <vg, and so that F, for every ordinal number » <»5 has the
cardinal number corresponding to » if » is infinite, and is finite if » is
finite. Obviously FocF,<...cF,=....

In order to define our denumerably many sets E,, F,, ... we define
E.nF, E,nF, ... by transfinite induction for every » <»y and demand
that E,, E,, ... all be contained in U,F,. We let B,nF,, E,nF,, ...
be the empty set. For a given ordinal number » < v; we assume the sets
E\nF, E,nF,, ... defined for p<v. If » is a limit number we have
F,=U,_,F, and we can put
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E,nF, = (B,nF).

u<v

If » is not a limit number we have, for a certain element z,,
FV = Tv——l (Fv—l) = Fv——l u {a'nxva'm I a’n’ a’m € S} v {a’m_lxv-lan_l l a’n’ am € S}

when 7, is 8={a,, ..., ay} with an upper index. Hence, if this index
is k, we can put

E,nF, =E,nF,, forh * &,
E,nF, = (EynF, )0 {a,2,a, | a,a, €S} u
u{a, 'z, a, 1| a,,a, €S} forh=15.

Obviously, the denumerably many sets £, E,, ... constructed in this
way have the desired properties. This completes the proof of the lemma.
For orientation we remark that when ¢ is the additive group of real
numbers, it suffices to choose the symmetric disjoint sets &,, F,, ... so
that each of the sets contains arbitrarily long intervals.

In our infinite group G we now make a fixed choice, once and for all,
of the subsets Z,, F,, ... in accordance with the lemma.
For an arbitrary real-valued function f on G and an arbitrary positive

integer & we put
N

M, f= inf sup Y «,f(va,y),
A,B,C 2,y n=1

where
o= {ag, ooesoy; Qg oesyty 0y >0, 9+ tay=1,0a,eq,
B = (b, ..., bp), b,e@,
C = (¢, ..., CR), e,

and the sup is to be taken over the non-empty set of all those z, y for
which all the NR elements b,za,yc, are in E,. It is clear that 3, f
really depends only on the values of f in F,. Next we put

Myf = limsup M, f.

h—>o

Of course we must allow the values + oo and —oo for M, and M.
The following well-known rules hold for the (usual) upper mean value

N
-ZTIf = inf sup Z(xnf(xa’ny) ’
g zy n=1
which plays an important role in [3]:

Math. Scand. 5. 4
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M(f+g) < Mf+Mg, M{f} =AMf (constant = 0)
M1 =1, Mf<Mg forf<gyg
M{\fgl} = (M{f1P})"P(M{gleN™  (p>1,¢> 1, pr+g?t =1)
(M{f+gi73)'® < (MSf123)7 +(M{lglP ) (p 2 1)
M{f@)} = M{f(@Y)}, M{f(axb)} = M{f(x)}.

They hold also with 3, instead of M, and consequently also with M
instead of M. The rules for 3, can be proved in a similar, and nearly
as simple, way as the corresponding rules for M.

Together with the upper B-mean value M zf we consider the lower
B-mean value Mpf=—My(—f), and together with M, f we consider
M, f=—M,(—f). Ina similar way as usual we deduce the rules which
contain M, alone or both M, and M,. From these rules follow the cor-
responding rules which contain M, alone or both M and M.

Obviously — —

Mf < Myf < Myf < Hf
(even with % instead of B). If the sign of equality in the middle holds
and M 5f is finite, we say that f has the B-mean value M zf=M f=M pf.
If f has a (usual) mean value Mf = Mf= Mf, it has the same B-mean value.
For a complex-valued function f(z)=wu(x)+v(x) on G we put

when both M zu and M zv exist. Then for an arbitrary complex constant
¢ we have Myg{cf}=cMyf. Furthermore, if Myf and Mg exist, then
so does My(f+g), and My(f+g9)=Mgf+ Mgg. Finally we note that
| Mpfl < Mp{|fl}. In fact, for a certain real 6 we have

|Mpf| = €* Mpf = Mplef} = Mp{Re(e“f)} = Mp{lf]}.

For an arbitrary p=1 and an arbitrary complex-valued function f on
G we define the B?-norm

Iflze = (Mp{lfIP}>.

In particular, a polynomial of the form

FO)

(1) Hz) = g’ s X a, , DY, (x),

y=1 0 0=1

where the matrices D¥(x)={D®, (x)} of orders s* are inequivalent irre-
ducible unitary representations of @, has its B2-norm ||¢||z, determined by
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8"
g = M{jt]*} = 2 s 2 la,, ol

(see [5, p. 122]). ’

We shall now prove that the space of all complex-valued functions on
G is complete with respect to the BP-norm. Let f;, f,, ... be an arbi-
trary BP-fundamental sequence. Then

Wfoa=Ffalp® <&, form >mn,

where ¢, — 0 for n — co. We have to prove that there exists a function
f such that ||f—f,llzp — 0 for # - co. For m>n we can determine a
non-negative integer H(n, m) so that

M {|fo—fn?} < 26, for b > H(n,m).
When the sequence f,, f,, ... consists of W-a.p. functions we have
M| fn=Tnl?} = M{fo~fal?} S &, form >mnandalh,

so that in this case we can choose all our H(n, m)=0.
We now choose integers Hy=0<H,<H,< ... so that

H, z H(1,2), H,z max(H(1,3), H(?2,3)),
Hy =z max (H(1,4), H(2,4), H(3, 4)),

As f we choose a function which is equal to f; on E,, ..., Eg , equal to
Jeon By .y, ..., Ey,, etc., and arbitrary elsewhere.

For a given n we consider an h>H,_,. Then we can determine m=n
so that H,,_,<h<H,,; hence in ¥, we have f=f,, and since

b > H, ; 2 max (H(1,m), H2,m), ..., Hm—1,m)),
we have & > H(n, m) except when m=n. Thus
Mk{]f_fnlp} = Mh{lfm“fnlp} = 2

Letting £ — oo we obtain
Mp{|f =1} S 260 .

Hence our Br-fundamental sequence fy, f,, ... BP-converges to f, and
our statement is proved.
When the sequence f,, f,, ... consists of W-a.p. functions, we can

choose H,=m, and the construction of a BP-limit function f becomes
especially simple; we can put f=f, in E,, f=f, in E,, ete., and choose f
arbitrarily elsewhere.

4*
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Being in possession of a BP-norm for p2z 1, it is plain how we define a
Br-a.p. function on @. A function f on G is called Br-a.p. if there exists
a sequence of polynomials ¢, of the form (1) which BP-converges to f,
that is, ||[f—t,llzp = 0. (If the group is considered with a topology,
these polynomials are formed from continuous representations of the
group.) .

We can now proceed in the usual way by ascribing a Fourier series
to every BP-a.p. function and establish the related results (cf. [2, pp.
104-110] and [5, pp. 119-144]).

Only the auxiliary inequality

llollzr = 1Ifllze

in [2, p. 107] for a Bochner-Fejér polynomial ¢ of a BP-a.p. function f
may need an explicit proof in the present case. We have

o(x) = JE[ s{f @) K(B)},

where K is a non-negative polynomial of the form (1) with M{K}=1.
From Holder’s inequality we get in the usual way

lo(2)] < Mp{|fat) K®)} = (Mp{f(at1)PK@])F(MEK@D})?.

Hence
' lollps? = M{loP} < M Mp{|f(xt™)|PK(t)}
x ¢

= M Mp{|f(t)" K (i)},
x ¢

and when to a given £¢>0 we choose «, >0 with a;+ ... +ay=1, and
a, € @ suitably, this is

el

=

o Mp{|f(6-)? K (tza,)} + &

I
-

n

N
- M lfehP Y an K(toa,) ¢ + &
n=1

t

(1+&) Mp{|ft-1)*} + .

IIA

Th —
e oz < Mp{If17} < Ds{lfI} = Iflps”

as we had to prove.
For p=2 we obtain the Riesz-Fischer Theorem. A series of the form

o0 &)
280 X a, DY),
v=1 1

e, 0=
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where the matrices D®(x)={D% ()} of orders s* are inequivalent ir-
reducible (continuous) unitary representations of @, is the Fourier series
of a B2-a.p. function if (and only if)

o s

280 3 a2

v=1 0, 0=1
is convergent. A function f which in E; is equal to the A™ partial sum
of the first series for k=1, 2, ..., and arbitrary elsewhere, is a B2-a.p.
function with this series as its Fourier series.

The Correspondence Theorem in [4, pp. 19-20] can easily be trans-
ferred to the present general situation. Then it establishes a close cor-
respondence between the BP-a.p. points and the measurable p-integrable
functions on the Bohr compactification of G by all (continuous) almost
periodic functions on @. In particular, the “‘contraction” to G of the
Fourier series of the measurable p-integrable functions on the Bohr
compactification of @ yields exactly the Fourier series of our BP-a.p.
functions.
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