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TWO REMARKS ON SET THEORY

TH. SKOLEM

1. A formulation of the axiom of infinity.

The axioms of Zermelo’s set theory mostly express that a class of the
objects constituting the considered domain D is a set. This means that
there is an object m in D such that all the members of the class and only
these are in the relation € to m. Only two axioms are not of this form,
viz. the axiom of infinity and the axiom of choice. However, the former
of these can be put in the same form, namely a class declared to be a set.
In an address [3] given at the International Congress of Mathematicians
at Cambridge, Mass., 1950, I hinted how it could be done, but did not
carry out the proof in detail. In this paper I intend to expose the proof.

For brevity I define the notions of b-element and f-element. We say
that n is an f-element of m when the conjunction nem & {n}em is
true. We say that » is a b-element of m, if n € m but n= {z} for every
element x of m. Then we shall consider sets m with the following 4
properties:

1) 0em,

2) m possesses a single f-element,

3) every subset » of m has at least one f-element,

4) if n=m and 0 € n, while » has just the same single f-element as m,
then n=m.

Let I(m) denote the conjunction of 1), 2), 3), 4).
THEOREM 1. If I(m), then m has no other b-element than 0.

Proor. Let us assume that bem, b=+0 and b=+ {x} for every x € m.
Putting m — {b}=n we have n <m, whence according to 3) it follows that
n has at least one f-element. If a is an arbitrary f-element of %, we have
aen, {a}en, so that also a e m. Now we must have {¢} € m which
implies that a is also f-element of m, because otherwise {a} € m would
yield {a} € n, since {a} +b. It follows from 2) that a is the single f-element
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of n. Further 0 € n because of 0 em and b+0. Hence according to 4)
n=m, which is absurd.

TaroreM 2. If I(m), then I(m+{{a}}), @ denoting the f-clement of m.

Proor. For brevity let m, denote m + {{a}}. Since 0 € m, we also have
0 € my. Thus m, has the property 1).

The only f-element of m being a, we have a em, {a} em. I assert
that {a} is f-element of m,. Indeed, were {a} not f-element of m,, then
{{a}} € m,. Since necessarily a + {a}, also {a}+{{a}} such that {{a}} € m.
Then, however, {{a}} would be a b-element of m different from 0, con-
trary to Theorem 1. Therefore {a} is f-element of m,. On the other hand,
let ¢ be an arbitrary f-element of m,, that is, c € m, and {c} em,;. If ¢
were +{a}, then cem and {c} € m, which means that ¢ is the single
f-element a of m, whence {c}={a} € m,. Hence m, has the single f-ele-
ment {a}, so that m, has the property 2).

Let n be a subset of m,. If n<m, then according to 3) » has at least
one f-element. Else {z} en, and because of {{a}} €m, we have {{a}} €n,
so that {a} is f-element of n. Thus m; has the property 3).

Let n, €m; & 0 € n;, while n, has a single f-element identical with the
f-element {a} of m;. Then n,=n+{{a}}, where n<m. If now zen, then
x € ny, whence {x} € n, because = {a} is impossible, since {a} € n. Hence
n cannot possess any other f-element than a, so that n=m according to 4).
It follows that n, =m,. Thus m, has the property 4).

The two following theorems are elucidating although not necessary
for my present purpose.

TrEOREM 3. If I(m) & n<m & 0 € n, n possessing just one f-element,
then I(n).

Proor. Let M be the subset of m consisting of all elements ¢ of m
such that I(n) is true for all » =m containing 0 as element and possessing
a as single f-element. First it is seen that 0 € M. Indeed, when O is the
only f-element of n, then % must be {0} and I({0}) is true. This is clear
because otherwise n— {0}, being a subset of m, should contain an f-ele-
ment, with the consequence that » would possess at least two f-elements
against supposition. Now let a be an arbitrary element of M. I assert
that if {a} is still element of m, or, in other words, a is not f-element of
m, then {a} € M. Let 0 € n, n<m and let {a} be the only f-element of n.
I set n—{{a}}=n, and assert that  is the single f-element of n,. Ob-
viously a is f-element of n, since a=+ {a}. According to supposition, n
contains no other f-element than {a}.

Let us assume the existence of an element ¢ such that
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cen, & cka & {c}en,.

Then {c}+{a}, and therefore {c}en. Thus we have cen & {c} €n,
whence ¢={a}, but {a} €n,. This shows that n, does not contain any
f-element but a. Our supposition a € M yields I(n,), whence also I(n),
according to Theorem 2. So far it is proved that 0 € M and that M has
the same single f-element as m. Then according to 4) M =m. Thus
Theorem 3 is correct.

THEOREM 4. I(m,) & I(m,) - m; Smgvmy, S m,.

Proor. Let a, and a, be the f-element of m, and m,, respectively.
Then a preliminary remark is that either a, € m, or a, € m,;. Otherwise
m,Nmy would be a subset of m, without f-element. Now 0 € m,Nm,
so that due to 4) m;nmy=m, if m;nm, had no f-element =+a,, and
myNMmy=m, if m; Nm, had no f-element +a, Hence, if we should neither
have m,<m, nor my,=m,, then m;Nm, must possess an f-element
c+a,, a,. Then {c} € m,Nm,, that is, either {c} € m, or {c} € m,. In the
first case m, would possess an f-element #a, and in the second case m,
an f-element +a,. This would contradict the supposition I(m,) & I(ms).

Using Theorem 2 we observe that the sets in the sequence

{03}, {0, {0}}, {0, {0}, {{o}}}, - -

all have the [-property. Each set m’ in this sequence is obtained from
the preceding set m by addition of {z}, where a is the f-element of m.
Using Theorem 1 we see that no other sets m for which I(m) is true can
be built by successive addition of elements. The above sequence there-
fore contains all finite sets m for which I(m) takes place. Further I
assert:

THEOREM 5. If I(m) is true, then m s finite.

Proor. Let n be the subset of m consisting of all a € m such that
every subset p of m containing a as its single f-element is finite. Then
of course 0 € n. Letting a be an arbitrary element of n, every subset of
m having {a} as its single f-element will have the form p,=p+{{a}},
where p has a as its only f-element. Since p is finite, p, is also finite.
Thus, when a € n, {a} € m, we get {a} € n, or, in other words, » has the
same single f-element as m, and hence 4) yields n=m.

It is now evident that the union of all sets m such that I(m) is valid
is the Zermelo number series

0, {0}, {{0}}, ... .



TWO REMARKS ON SET THEORY 43

Therefore the axiom of infinity can be expressed by saying that the
class of all sets m for which I(m) takes place is a set, or in other words:
There extists a set M such that the equivalence

is generally valid.

As explained in my cited address, every set m in a theory which is
based exclusively on axioms of the form “The class so and so is a set”
can be defined by putting

rEM «—— (b(x) .

Here @(x) is a propositional function with x as free variable and possi-
bly other variables x,, x,, ... which are all bound, @ being built by
the operations of the predicate calculus from atomic propositions of the
form y € z. This leads to the following remarkable result for such theo-
ries:

TrEOREM 6. The definable sets constitute a denumerable class.

Indeed, it is possible to enumerate the propositional functions D(x).
This is clear because each @(z) is a finite sequence of letters. Perhaps
the most natural and simple enumeration may be obtained by restricting
the consideration to the expressions @(x) in prenex normal form, the
matrix being taken in conjunctive normal form, for example. Then there
is a one-to-one correspondence between the @(z) and the different com-
binations of: 1° a sequence of pairs (n,e), e=0 or 1 according as z,
occurs in the prefix as a universal or an existential quantifier, and 2° a
sequence of sequences of triples (n, m, ¢), where e=0 or 1 according as
the corresponding atomic proposition is z, € «,, or , € z,,. It is obvious
that all these combinations can be enumerated. Thus we get an enumera-
tion of the definable sets. This result is similar to the well-known Lowen-
heim theorem and shows likewise the illusory character of the classical
absolutistic conceptions in set theory.

2. The ordered n-tuples as sets.

It will often be convenient to be able to consider n-ary relations as
sets of ordered n-tuples. Then, however, one might ask what kind of
objects the n-tuples are. If we want to develop a set theory where we
take into account sets of n-tuples, either the ordered n-tuples must be
introduced as an independent notion which leads to some complications,
or one has to define, for each n, the ordered n-tuple as a set. Now there
is one rather trivial way of defining the ordered n-tuple as a set, namely
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as a set of » pairs {a,, ¢,}, where (a,, a,, ..., a,) is the n-tuple, while the
i, are n special individuals which are kept constant. We may say that
%y, + .., 1, represent the places where the a, are placed. However, it will
often be inconvenient that the use of this definition is restricted by the
necessity of keeping the ordered individuals a,, ..., a, apart from the
ordering individuals 4,, ..., %,. Therefore other definitions have been
tried. The notion of ordered pair (e, b) has been defined as the set
{{a, b}, {a}} by Kuratowski [1] and Wiener [4]. But in literature I have
found no answer to the general question how to define the ordered
n-tuple as a set. In the present short discussion I shall show that there
are different possibilities for doing this, and it is not easy to decide
which is the most advantageous.

In the first instance it would be natural to think that we could define
the ordered triple (a, b, ¢) as the ordered pair of the ordered pair (a, b)
and the element ¢, that is

(@, b,¢) = ((2,b),¢).

If, however, we develop a set theory with types, this will be inconvenient,
because (@, b) will be of higher type than ¢ when a, b, ¢ are all of the
same type. One could try to remedy this by putting

(@,b,¢) = ((a,b), {{c}}),
(@, b, ¢) = ({{a, 8}, {a}}. {{c}}) .

However, if we compare (@, a,b) and (b, b, a) we observe that both of
them equals ({{a}}, {{b}}), which of eourse in unacceptable.

It would also be natural to try to define (a, b, ¢) even simpler, analo-
gous to the way in which we have defined (a, ) above, namely thus:

(@, b,¢) = {{a, b, c}, {a, b}, {a}} .

But also this definition must be rejected, because it leads, for example,
to the result that (a, @, b) = (a, b, b)=(a, b) as is easily verified.

On the other hand, it is possible to define the ordered triple (a, b, c)
as an ordered pair of ordered pairs, namely for example as ((a, ¢), (b, o)).
Indeed, the equation

(a@,b,¢c) = (d,e,[)

or more explicitly

then requires that
(@,¢)=(d,f) and (bc)=(ef),
whence
a =d, b =e, c=f.

It may also be noticed that
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(@, a,a) = ((a, a), (a, 2)) = {{(a, a)}},

so that we do not run the risk of confusing (a, @, ¢) and (a, a) except in
the case of a pathological set a having the property of being element of
an element of itself.

Now it is possible to extend recursively this definition to ordered
n-tuples. If we assume that the notion of ordered m-tuple has been
defined, we may define the ordered (n-+1)-tuple a,, a,, ..., a,,, as the
n-tuple of ordered pairs

((al’ a’n+1)’ (“z’ a’n+l)’ e (a’n: an+l)) .
If it is known already that the equation
(by, by ..., 0,) = (b, 05, ...,8,)

furnishes the equations b, =6,", ..., b,=0b,’, then
7 ! ’
((1,1, Qg - - "a’n+l) = (al 5 Qg5 - - "an+1)
ylelds ’ ! ! /
(al’ a’n+1) = (al s Tpt1 )’ LR (an’ an+1) = (an s @yt ),
whence , , ,
Oy = A, Ay =0y, ..oy Quyg = Opyy -

Further we may notice that the different elements of the set which is
declared to be (@, a,y, ...,a,) are all of the type t¢+2n—3, when
Gy, Gy, . .., a, are all of the same type ¢. This difference of type makesit
clear that a confusion of the m-tuple (a,a,...,a) and the n-tuple
(@, a, ...,a) can occur, only in the case of a set theory without types,
and only when a is pathological.

Another possible definition of the ordered triple would be to put

(@,b,c) = {(a, b), (a,¢), (b,¢)} .

If we are working inside a set theory with types, we observe that all
three elements of the set constituting the triple are of type ¢+ 2 when
a, b, ¢ are of type f. As a consequence of this we avoid an identification
of (@, a, a) and (a, a); indeed, (@, @, a)=(a, @) can only take place when
a is element of itself. Further it is easy to see that the equation
(@, b,c)=(d, e, f) implies a=d, b=e, c=f. If ab+cs+a, this is most
easily seen by first noticing that d, e, f must also be different; for other-
wise the set (d, e, f) would not contain 3 different elements as (a, b, ¢), and
then @ must be =d and not =e or f because only d occurs first in two of
the three elements of (d, ¢, f), etc. However, the equation (a, b, ¢c)=(d, e, f)
also implies a=d, b=e, c=f in the case when two of the elements a, b, ¢
coincide. Since in this case (a, b, ¢) contains at least one element of the
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form (g, g), also (d, e, f) must contain such an element, which means
that two of the elements d, e, f must coincide. Looking at the expressions

(@, a, b) = {(a, a), (a,b)}, d,d,e) = {(d,d), d,e)},
(@, b,a) = {(a, b), (a,a), (b,a)}, d,e,d) = {(d,e), (d,d), (e, d)},
(b> a, a) = {(b: a’)’ (a: a)}? (6, d: d) = {(e: d)! (d: d)} ,

one verifies that a triple to the left can only coincide with one to the
right when a=d and b=e. This definition of the ordered triple is there-
fore in order.

After this it seems natural to define the ordered quadruple (a, b, ¢, d)

as the set
{(@, b, ¢), (a,b,d), (a,c,d), (b,c,d)}

and continue this procedure for the definition of the ordered quintuples,
sextuples, and so on. However, one could also define (a, b, ¢, d) as the set

{{(a’ b)’ (a’ c)? (a’ d)’ (b’ G)’ (b’ d)’ (c’ d)}} )

where the two applications of the operation { } instead of only one have
the effect that it is possible to distinguish between (a, @, @, a) and
(@, a, @) except in the case of a pathological a.

A definition of ordered pairs and tuples can be found in [2, p. 281].
However, this definition seems rather artificial.

I shall not pursue these considerations here, but only emphasize that
it is still a problem how the ordered z-tuple can be defined in the most
suitable way.
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