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LOCAL AND GLOBAL PROPERTIES
OF FUNDAMENTAL SOLUTIONS

LARS HORMANDER

0. Introduction. Let P(D)=P(:~10/cx!, ..., i"10/0z") be a partial dif-
ferential operator with constant coefficients. (For this and other nota-
tions used here, we also refer the reader to Hormander [2].) By a funda-
mental solution of P(D) we shall mean a distribution # such that
P(D)E =4,, the Dirac measure at 0 (Schwartz [5]). The fact that every
partial differential operator with constant coefficients has a fundamental
solution was first proved by Malgrange [3] and by Ehrenpreis [1]. More
precisely, in these papers the existence of fundamental solutions of finite
order and “arbitrarily small exponential growth’ was established. Both
of these properties are merely global. The question raised by Schwartz
[6] whether there always exists a temperate fundamental solution is
still open.

In his thesis [4], Malgrange proved the existence of a fundamental
solution & of *“‘small exponential growth’ such that E x L2, < L? ., where
L?e (L3) is the space of locally square integrable functions (with
compact support). This result, which contains the one mentioned
above, means that Z has a certain uniform local regularity.

The purpose of this paper is to prove that every partial differential
operator P(D) with constant coefficients has a fundamental solution #
of “‘small exponential growth” (in a sense to be explained below) such
that

(0.1) QD)(E x L%) < Loc

for every partial differential operator @(D) with constant coefficients
which is weaker than P(D) in the sense of Hormander [2]. Such a funda-
mental solution we call proper. Conversely, it is also proved that (0.1)
cannot hold for any fundamental solutions £ of P(D) unless ¢ is weaker
than P.

We also give examples which prove that in general there does not
exist any proper temperate fundamental solution (Section 3). This does
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not solve the problem of Schwartz mentioned above, but it shows that
the global restriction of being temperate is not always compatible with
the natural local properties which we require.

From the results of Héormander [2] various properties of proper funda-
mental solutions can be deduced. In particular, a necessary and suffi-
cient condition for the existence of a fundamental solution which is a
locally square integrable function is that

(0.2) S dE(P(£)? < oo,

where P(£)? is the sum of the squares of P and all its derivatives. If
(0.2) holds, every proper fundamental solution is locally square inte-
grable. — The author does not know any condition for the existence of
a locally integrable fundamental solution.

Our method of constructing fundamental solutions is a modification of
that of Malgrange [4], and thus depends on the Hahn-Banach theorem.
It may be remarked here that the result of Malgrange can be obtained
by an explicit construction. This was done by the author in an unpub-
lished manuscript. Using this approach, Tréves [7] has recently studied
fundamental solutions of differential operators depending on a parameter.
However, the author has not been able to construct proper fundamental
solutions in that way.

1. Construction of a fundamental solution. A fundamental solution of
the differential operator P(D) is by definition a distribution £ such that
P(D)E =§,, the Dirac measure at 0. An equivalent definition is that
E «(P(Dyu)=u for all ueCy’, and consequently for all distributions u
with compact support. It is in fact sufficient that

(1.1) (B *(P(D)u))(0) = u(0), ueCy,

for applying this to all the translated functions (- +x), it follows that
E «x(P(D)u)=u. Our aim is to construct a fundamental solution % such
that Q(D)(E xL3%)<L?4c for as many differential operators @(D) as
possible.

TaEOREM 1.1. Suppose that P(D) has a fundamental solution E such that
(1.2) Q(D) (E*ch) [ Lzloc .
Then Q must be weaker than P, that s,

(1.3) Q(&)/P(£) < O when & is redl,
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where
(1.4) P(E) = (Z1P9E)R)E, Q&) = (Z102@)E)},

the sums being extended over the derivatives of all orders =0 of P and @,
respectively.

Proor. Suppose that (1.2) is valid. Let » and P(D)x be in L2?,. Since
u has compact support it follows that u=E x(P(D) u), and hence

QD) = QD) (E +(P(D)u)) € LP1oc

in virtue of (1.2). Since ¢(D)u has compact support, we have proved
that Q(D)ueL? if w and P(D)u are in L2,. But then it follows from
Theorem 2.2 and a remark on p. 170 in Hormander [2] that (1.3) must
hold.

DeriniTION. A4 fundamental solution E of P(D) will be called proper if
(1.2) 48 valid for every Q weaker than P.

In terms of this definition, our main result is:

TarOorREM 1.2. Every differential operator with constant coefficients has
a proper fundamental solution E of small exponential growth in the sense
that E |cosh (& (x?+ l)i) 18 temperate, ¢ being any preassigned positive
number.

For the definition of a temperate distribution we refer to Schwartz
[5, t. II].

In the proof of Theorem 1.2 we shall use some normed spaces instead
of L2, and L%, in order to simplify the arguments, and to obtain the
second half of the statement. By L2, where r is a real number we shall
denote the Hilbert space of all functions u such that u(x)er® is square
integrable. The norm in L2, is defined by

(L5) Il = | lu(@)2errilde
Let ¢ be an arbitrary but fixed positive number. We shall prove the

existence of a fundamental solution E such that the mapping

% — Q(D)(E *xu)

can be extended from Cj to a continuous mapping from L2 to LZ2_,.
As we shall see later on, this contains Theorem 1.2.
In the proof of Theorem 1.2 we also need another norm, namely
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(1.6) N(u) = sup S (& +in)|/P(E) d&, we O,

I e

where 4 is the Fourier Laplace transform of «,
#() = Se_i‘”’g’u(x)dx .

THEOREM 1.3. There exists a fundamental solution E of P(D) such that
(1.7) |E*xu(0)] < CN(u), ueCy .

Before proving this theorem we shall prove that Theorem 1.2 follows
from Theorem 1.3. Thus let # be a fundamental solution of P(D) for
which (1.7) is valid. Replace » by Q(D)u*v, where » and » are in Cf’
and @ is weaker than P. This gives

(1.8) |QD)E xuxv(0)] £ CN(QD)uxv).

In order to estimate the right-hand side of this inequality we note that
the Fourier-Laplace transform of Q(D)uxwv is @({)4({)0(¢). Since

Q& +in) = X Q&) (in),|«!
and ¢ is weaker than P, we have
QE+im)l/P(§) < €

when || <¢ and & is real. Hence
(1.9) N(Q(D)u+v) < ¢’ sup S (& + i) H(E +im)| dE .
Using Parseval’s equality and (z, n) <|z||| we obtain

20 i+ i a = {u@Peerde < ik, 1 < e,

and a similar inequality for 9, so that with Cauchy-Schwarz’ inequality
applied to the right-hand side of (1.9) we get

N(QDyzv) < C” Jull o, u,veCy .
Combination of this estimate with (1.8) gives

(1.10)

S(Q(D)E*u)(z)v(—-x) de | < CO" |l o), w veCT.
Since (7 is dense in L%, and L?_, is the dual space of L?, this gives if
we divide by |jv|, and take the supremum over v

(1.11) IQD)E *u||_, = CC”|lull,, weCy .
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Hence the mapping 4 — @(D)E xu can be extended (by continuity) from

7 to L2, so that it becomes a continuous mapping from L2, to L2 .

For ue L?; it is obvious that Q(D)E xu is the same with this definition as

with that of Schwartz [5]. In particular we get Q(D)E » L2, < L? < L? .
Also note that it follows from (1.7) that

E *u,(0) > 0

if w,(z) cosh(z(2?+ 1)*)—>0 in & (cf. Schwartz [5] for this notation).
For then we have that
\ linte-+imide ~ o

uniformly in # when |n|<¢ so that N(u,) > 0. But this means that
E |cosh (e(x2+ l)*) is continuous on &, hence is a temperate distribution.
Thus we have proved that Theorem 1.3 implies Theorem 1.2.

Proor or THEOREM 1.3. We have to construct a linear form
L(u)=E xu(0), defined in Cy’, such that (1.7) holds, that is,

|L(u)] £ CN(u), ueCy ,
and the definition of a fundamental solution is satisfied, or
L(P(D)u) = u(0), ueCy .
Hahn-Banach’s theorem shows that a linear form with these properties

exists if and only if
(1.12) |u(0)] < CN(P(D)u), ueCy .

We shall prove this inequality by means of a slight extension of the
arguments of Malgrange [4], and will then have accomplished a proof of
Theorems 1.2 and 1.3.

Lemma 1.1. (Malgrange.) If f(¢) is an analytic function of a complex
variable t when [t <1 and p(t) ts a polynomial in which the coefficient of
the highest order term is A, then

(1.13) 47(O)] 5 (22| 1£(e)pe)] dp

Proor. Let m be the degree of p, and ¢ be the polynomial () =™ p(1/t),
where p is obtained by conjugating the coefficients of p. We then have
9(0)=A4 and |g(e?)| = |p(e??)| so that (1.13) reduces to the well-known
inequality "
£(0)a(0)] 5 222 { 1f(e)a(e) dop .

-7
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Levmma 1.2. With the notations of Lemma 1 we have, if the degree of
p s =m,

(L) OO S e | et d

Proor. We may assume that the degree of p is m and that
p(0) = I (t—1) .
1

Applying the previous lemma to the polynomial JT} (¢—¢,) and the ana-
lytic function f(t) II7}, (t—1;), we obtain

)| 1Tt | < @2 § If e ple)] dg

m
It
k+1

A similar inequality will hold for any product of m —k of the numbers ¢;
on the left-hand side, and since p*X0) is the sum of m!/(m—£k)! such
terms, multiplied by (—1)m—*, the inequality (1.14) follows.

Note that (1.14) reduces to (1.13) when k=m and is trivial when
k=0.

We shall now rewrite Lemma 1.2 in a form which facilitates the exten-
sion to several variables. Suppose, for simplicity in the statement, that
f is entire and apply (1.14) to the functions f(r¢) and p(r¢), where r> 0.
This gives

1 2m)2{ £(re) plrei)] dp

—n

ORI+ 5 s

Let y(r) be a non negative integrable function with compact support.
Multiplying by 2ary(r) and integrating with respect to r, we obtain

m 1l
L15)  f @290 \ 1t w(ieh @t s = | 170 20)] wlie) dt,
(L18)  IF@PPO)] Y 18] plit) dt < s V 1F )20 wi])
where dt stands for the Lebesgue measure rdrde and the integrals are
extended over the whole complex plane. The following generalization
to several variables follows immediately by applying (1.15) successively
to the variables {3, ..., {,, one at a time.

Lemma 1.3. Let F({) be an entire analytic function and P({) a poly-
nomial of degree <m in {=({y, ..., (,). Let ¥(C) be a non negative inte-
grable funmction with compact support depending only on |ly, ..., |C,l
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Then

(1.16) |F(0) P™(0)| S 2. () dE < {iro POl we @,

m!
(m— |x|)!

where di is the Lebesgue measure in C,,.

We can now prove (1.12). Let » be in (f and write P(D)u=v; then
P()i(C) =49(¢). Apply Lemma 1.3 with F(Z)=4(£+{), with P(¢) replaced
by P(£+¢) and with Y({)=1 when |{|<e and =0 otherwise. Adding
over all « and noting that P(&) < Y |P®(£)|, we obtain

(1.17) [E)NPE) < 0y S [a(E+ ) P(E+) dl = O S [9(&+)| dE .
|<e {3
Hence g :

w(O)] = | 2 { ae)de |

<0, SS 6(& +0)| | P(&) dedE
tj<e
— oy (\§ 1o+ vin)Ple dedean

|2+ [2 < e
Now we have

(1.18) PE+E)PE) < Cy when [£] < &

For P@(E+&)= X Pe+o(E)ES[|]! so that ]P(“>(£+§’)|/13(§) is bounded
when |£&'| £ e. This gives P(S)/ﬁ(§+§’) £, and hence

w(O) = 0y C, ({ 1o(e+ & +in)1/Pie+&) deag an
< C/C,N(v) SS de' dy’
&2+ |2 <2
— ON(P(D)u).
The proof is complete.

We next examine the question whether all fundamental solutions
may be proper.

TrroreM 1.4. Every fundamental solution of P(D) is proper if and only
tf P(D) is complete and of local type. Every fundamental solution, such
that B x L2, < L., is proper if and only if P(D) is of local type.

The terms ‘complete” and “of local type” are defined in Hérmander
[2, pp. 200 and 218].

Math. Scand. 5. 3
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Proor. First assume that P(D) is complete and of local type. If B, and
E, are fundamental solutions, v =K, — &, satisfies P(D)u =0 and is there-
fore an infinitely differentiable function. If we take X, proper, it follows
that Z, is also proper. Hence all fundamental solutions are proper in
this case. (This was also pointed out in Hormander [2, p. 223].)

Next assume that P(D) is of local type and that B*L2.< L%q.. If
JeL?c and we put w=FE xf we have ueL?o. and P(D)u=feL?. Hence in
virtue of the definition of operators of local type and Theorem 2.2 in
Hoérmander [2], it follows that Q(D)uecL?c for all @ weaker than P.
Hence £ is proper.

We shall now prove the other half of the theorem. Assume that all
Sfundamental solutions E of P(D) for which ExL2.<L*¢. are proper.
Let U be the set of all solutions of P(D)u=0 such that u«L2,< L%,e.
Let B, be a fixed proper fundamental solution of P(D). By assumption,
if ue U, the distribution £ =E +u is a proper fundamental solution of
P(D), for E x L2 < L?,c. Thus Q(D)E x L3, < L3 if Q(D) is weaker than
P(D), and since the same is true of X it follows that Q(D)u x L2, < L?4c,
hence Q(D)ucU. — Also note that every locally square integrable
solution of P(D)u=01is in U.

Without restriction we may assume that the coordinate system is so
chosen that P(£) is a complete polynomial in &, ..., §, and is indepen-
dent of &,,,, ..., &,. The algebra generated by the polynomials weaker
than P then consists of all polynomialsin &, . . ., &, (Hormander[2, p. 208]).
Now let U, be the set of those solutions of Pu=0 which are in U and
only depend on #%, ..., 2". Since @(D)U,<U, if @ is weaker than P, it
follows that U, is invariant for differentiation with respect to 1, ..., 2"
and hence for all differentiations. If feL?; and we U, it thus follows from
the definition of U that all derivatives of uxf are in L?... This proves
that wf is infinitely differentiable (Sobolev’s lemma). Hence it easily
follows that D*ue L2, the dual space of L2, for all x, and a second
application of Sobolev’s lemma thus shows that » is an infinitely differ-
entiable function, if ueU,.

Now an easy modification of the proof of Theorem 3.7 in Hérmander
[2] shows that, if every locally square integrable solution of a partial
differential operator with constant coefficients is infinitely differentiable,
then the operator is complete and of local type. In fact, one only has
to consider the Hilbert space of all solutions which are square integrable
with respect to e*"dx and argue in the same way as there. Hence it
follows that P(D) is of local type.

It remains to prove that P(D) must be complete if all fundamental
solutions are proper. Assume that P(D) is not complete; we may assume
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that P(D) does not contain any differentiation with respect to z!. Let
E, be a proper fundamental solution, and w an exponential solution of
P(D), and set
E(v) = Eyv) + S ovfoxt wdx? ... dx.
Z=0

It is immediately verified that E is a fundamental solution and that
E x L is not contained in L%,.. Hence £ is not proper.

2. The character of proper fundamental solutions. We shall here
examine more carefully the properties of the convolution £ xf when
fel?; and E is a proper fundamental solution of P(D).

DerFINITION. A linear subspace V of the space 2’ of disiribuiions is
called local if

1° peCy’ and feV implies gfeV.

2° Bvery distribution f such that ¢feV for all peCy is in V.

THEOREM 2.1. Let P(D) and Q(D) be two differential operators with
constant coefficients and E a fundamental solution of P(D). If

(2.1) QD)ExL? <V,
where V is a space of distributions, it follows that
(2.2) QDueV if wel? and P(Due L.

On the other hand, of V is a local space of distributions and (2.2) is true,
we have (2.1) for every proper fundamental solution E.

Thus the proper fundamental solutions are in a certain sense the best
possible.

Proor. Assume that (2.1) holds and let ueL?;, P(D)u=veL?. Then
u=Ex(P(D)u)=E xv and hence

QD) = QD)E*xve V.

This proves (2.2). Now assume that (2.2) is true and that V is a local
space of distributions. Let E be a proper fundamental solution. Take
feL?. and set g=ZE«f. Then P@¥geL?,. for every « since & is proper.
Hence if peCy and we set h=g¢g, it follows that heL?, and that
P(D)h= Y PYD)gD,pfl«|!eL?. Thus it follows from (2.2) that Q(D)h =
Q(D)(pg)e V. Let p be another function in Cf, arbitrarily chosen.
We may assume that ¢=1 in a neighbourhood of the support of .
Then we have, in a neighbourhood of this support, @(D)(¢g)=@Q(D)g so

3x
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that pQ(D)g=y@Q(D)(pg)eV in virtue of the definition above, 1°. Since
y is arbitrary it follows from 2° that @(D)ge ¥V, which proves the theorem.

Theorems 2.6, 2.7, 2.15 and others in Hormander [2] give results of
the form (2.2). Combining them with Theorem 2.1 we obtain the follow-
ing three theorems, if in the first one we also note that Q(D)EF x L2, is
contained in the space of continuous functions if and only if Q(D)# € L.

THEOREM 2.2. If E is a proper fundamental solution of P(D), we have
Q(D)E € L. if and only if

2.3) Sé(s)2/13(5>2 dé < oo

This condition is also necessary for the existence of any fundamental solu-
tion such that Q(D)E € L¥qc.

THEOREM 2.3. If E is a proper fundamental solution of P(D), we have
Q(D)E*L2c [ Lploc if
2.4) QENP(E) € LoD (p > 2).

TueOREM 2.4. If E is a proper fundamental solution of P(D), the map-
ping u — Q(D)E xu maps bounded sets in L3 into compact sets tn L2 oc if

and only if Q(&)/P(E) - 0 when & - oo

3. The non existence of temperate proper fundamental solutions.
Let P(D) be a differential operator such that P(§)+0 when £ is real.
If E is a temperate fundamental solution with Fourier transform £, we
must have P(&)E =1, so that £ is the function 1/P(£). Since it follows
from algebraic results (Seidenberg [6]) that 1/|P(&)| £ C(1+ &)™ for suit-
able C and m, there exists one and only one temperate distribution with
E=1/P(¢). We are going to give one necessary and one sufficient condi-
tion for this unique temperate fundamental solution to be proper.

THEOREM 3.1. Suppose that P(E) >0 and that the temperate fundamental
solution E of P(D) is proper. Then, if @ is weaker than P and Q(£)20,
the integral

(3.1) S Q(&)/P(E) dé

|é=nl =1

must be a bounded function of 1.

Proor. When % and v have their supports in a fixed compact set K,
we shall have
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@B~ vaz| < ool

where the norms on the right are L?-norms. We choose a fixed function
uy such that |4y(£)|=1 when |£]|<1 and apply the inequality to the
functions u=v=1u,e' ™" with real . This gives

{ taote-nre@ P ae < o
Hence the integral in (3.1) is also bounded by C’.

TaEOREM 3.2. Let P(D) be a differential operator such that

(3.2) S |PE)/P(E)] dE

|-l =1

18 a bounded function of n for every . In particular, the function 1/P(&)
is thus supposed locally integrable and temperate so that there is a tem-
perate distribution E with Fourter transform 1/P(&).” This is a proper
Sfundamental solution.

Proor. It is obvious that # is a fundamental solution. To prove that
E is proper we shall prove that (1.7) holds. Let » be in Cy’. Then

|BE*xu(0)] = (27

~—

GG

=0 SS (€ +&)|P(§+&)| dedE’ .
I=1

Since by assumption the integral

S PE+E)[|PE+¢&) d&’
¥ =1

is bounded, we obtain
B (0] = 0 (sup (e +8)|/P(e-+£) de
=1

Let @ be a bounded domain in the complex n-space having the real unit
sphere in its interior and which is contained in the strip [Im¢{| <e. Then

sup |P(€)] = 0 1F()lde
1#l=1 P

for all F(¢) which are analytic in G, and hence, % being analytic,
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e+ &) < 0"Sm<s+c>|d:, €< 1.
Q

Using this estimate and (1.18) we now obtain
Bruo) = ¢ \\{ tae+ & +in) P&+ &) deaeran < 0N,
Etin e@
which proves the theorem.

We are now going to apply these two theorems to two examples.

ExampLE 1. Let P(§)= 2, ;€224 1. Then the temperate fundamen-
tal solution is proper if and only if the dimension = is = 4.

Proor. Assume that the fundamental solution is proper. Then, by
Theorem 3.1, we must have

S £2PE)dE < C .

[¢é—nl=1
Now note that P(&)=&,2(&,2+ . . . +&,2)+ terms independent of &,. Thus,
if we take n=(¢, 0, ..., 0) and let { - oo, we obtain

5(522+...+5n2)—1d§ <C.

lel=1

Hence n—1>2, that is, n>4.
Next assume that n>4. Since P(£)=&,2(&2+ . . . +&,2) it follows that

(3.3) $ 1Q(&)/P(e)| dé

|6l =1

is bounded when Q(&)=¢,2 and hence when Q(£)=§;2. Obviously this is
also true for @(&)=1 and Q(&)=¢&;2&,2 with 7+% and therefore for the
geometric means Q(&)=¢&, and Q(&)=¢&;2§, or &£, with ¢+k. Since all
P@ are sums of such polynomials, it follows from Theorem 3.2 that % is
proper.

ExavreLE 2. Let P(&)= (&, &, — 1)% + &,2* with £ > 1 (two variables). We
shall prove that not even K+ L?; < L%, for the temperate fundamental
golution F. Examination of the proof of Theorem 3.1 shows that we
have only to prove that the integral (3.1) with @ =1 is not bounded.

To do 8o we consider the integral SdE/P(E) over the set a<&,<a+1,
0= &, <1, with large positive a. In this set we have P(&) < 2/a?* provided
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that 05§, <1/a and —1fa<& &, —~1<1/a. The latter inequality is ful-
filled for all &, in the interval (a, a+1) if

E@a+1)—1 £ 1fa, &a—1 2 —1fa,

that is, if 1/a—1/a®< &, £1/a. This interval has length 1/a? and hence
the integral of 1/P(§) over the square is larger than a%/2a?, which tends
to infinity with a if £> 1.

e @

F.
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