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NOTE ON SIMULTANEOUS QUADRATIC CONGRUENCES

L. J. MORDELL

Let p be an odd prime and let
f(x) = ayz?+ ... +a,2,2+0ay,

where the a’s are integers and @,a,...a, == 0 (modp). It is well known
(cf. [1, p. 491]) that the number N, of solutions of

(1) f(x) =0 (modp)

can be expressed in a simple form. Since all the congruences throughout
this paper are taken mod p, we shall omit mod p hereafter. Then with the
usual Legendre symbol, we have the results:

n even:

— (-)¥"a,a,...a

N, = p™1 — x}n—l( n>, 0,
2) 1=P p P ay =

— 1)
N1 - p«n_l + (p_l)p%n_l <( ) 22042 dn) , @y = 0
p
7 odd:
_ 1)+
(3) N, =p* 1 4 p%(n—l) (( 1) Aoy - - - “n) ) 4 %0,
P
N, = p* 1, a,=0.

In particular, when p is large, we have various estimates
(4) Ny=p 1+ 0pP), 6=1,0144n
uniformly in the constants a. These results, however, can be found
without a knowledge of the exact results.

Let us now consider the number N of solutions of the m < simul-
taneous congruences in the n variables zy, @, ..., 2,
(8) fo@) = a2+ ... ta,z2+a,, =0, r=12...,m.
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We cannot expect to find exact formulae for N comparable in simplicity
with (2) and (3). Surprisingly enough when all the @,,=0, and m=2
and » is odd, the result expresses itself in a form (27) similar to (2)
when @¢,=0. The exact results for IV are not without interest and in
some general cases lead to results of the types (4). They are not best
possible for m > 2, but I give a conjecture for the best possible result.
The results will be more interesting and less complicated if we impose
the restriction that when all the a,,=0, the congruences (5) are linearly
independent in respect of every set of m variables taken from the n

variables x;, ,, ..., x,. But when the a, are not all =0, we assume
that the congruences (5) are linearly independent in respect of every
set of m variables taken from the %+ 1 variables z,, x,, ..., %,, L.

We shall see that the value of N can be expressed in terms of sums

S, 1=0,1, ..., m—1, now defined. Write
‘B1'= blrt1+"'+bm—l.rtm—l’ r = 0, 1, ...,n—l,
where the b’s are easily expressed in terms of the a’s.
Then BB B
(6) 8= (%x’) ,
12

where the summation is taken over a complete set of residues for each
of the m —1 variables ¢. The estimation of sums such as §; seems to be
very difficult except when n—1{ is even. Then §;=0 as is seen on re-
placing ¢,, ..., ¢, by &, ... #,_, where t is a quadratic nonresidue of p.
When »—1 is odd and m —1 <% when all the ¢,,=0, I suggest the best
possible result

(7) Sl — 0(p}(m—l+l)) .

This is true when m —1=2 as follows from a deep result by Weil in
the theory of algebraic function fields of. [2]. Thus

nt bty + bzrtz)

(8) 21]( .

When t,==0, put ¢, =tf,. Then

n—l

(9 - (- 1)%7[[(617”1)2’) n (p—l)l]( )

and Weil’s result shows that in general, the first sum is O(p?).
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A crude estimate for §; in (6) is obtained by taking m —I—1 of the
variables ¢t arbitrarily. Then on noting Weil’s result in (9)
(7') 8 = 0(p" ),

we find the following results.
Suppose first that » is even. If all the a,,=0,

(10) N = prm 4 O(p D | ph® D), a2 2m,

where the stroke separates the crude estimate on the left from the con-
jectured estimate on the right. If not all the a,,=0,

(11) N = pvm 4 O(pt™ ™ | pt®™ ™), 5 2 2m—2.
Next let » be odd. When all the a,,=0,

(12) N = pr=m 4 O(pt"™ | p™D), 2 2m-1.
When not all the a,,=0,

(13) N = pr=m 4 O(pi"t | pi™), n=2m—1.

When n does not satisfy the inequalities in (10) ete., I can find only
the crude result

(14) N = prm 4 O(p™1),

which, however, is best possible when m=%n—2 or n — 1, except when all
the a,,=0.

The results for m =2 are given in (25) and (26).

We consider first the case when all the a,,=0. We may suppose then
that m<n—1 since if m=n—1, the congruences give the ratios of
w222 ... . Write e(x) =e22/?, Then the number of solutions of the
congruences (5) is given by the formula

(15) PN = ;e(tlfl(x)'}‘ ot ful(@)

summed over a complete set of residues for each of ¢, ...,¢, and
%y, ..., %, For clearly the general term of the sum in (15) is zero or p™
according as x is not or is a solution of (5). Hence

(16) pmN = Y e(dyz,2+ ... +4,x.2),
t,x
where
17 A, =a,t+ ... ta,t,. r=12 ...,n.

When all the s =0, the corresponding terms on the right hand side
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give p™. To evaluate the other terms, we require the well known Gauss’
sum

dlelaz?) = N (227) pt, a == 0, where ¢ = ¢10~1*
X

», a=0.

Suppose now the ¢’s are such that only A (where 0<1<m) of the
A4, ..., 4, are =0. Since any m A’s are linearly independent, this is
allowable and not all the ¢’s are =0. Suppose then that 4,', 4,", ..., 4,
are all =0. Summing for the z’s, the sums in z;, ..., z; each give p,
and so we have

m-1 Ay ... Ay
(18) pN =pm + Y [8"*‘ prtd Y (—f£~-”~)] ;

A=0 12

where the sum in the #’s involve m — A independent variables ¢’ obtained
by eliminating ¢,’,¢,’, ..., ¢,;’ by using 4,'=0, ... 4,/=0. The summa-
tion in 4 is also to include every selection of 1 forms from the A4’s.

The general term in the ¢ summation in (18) is zero when n—1 is odd
as is evident on writing #,, tt,, ... for ¢, %, ..., where ¢ is a nonquad-
ratic residue of p. We suppose then that n—4 is even. Then since from
(7), (7’), the crude and the conjectured estimates for the ¢ summations
are O(p™ 1), O(p¥™*), respectively, we have

i N = P+ Elo(pm%m—l—l) | p§(m+n+1)) .
=0

Suppose first that » is even. Then the dominant term here arises from
A=0, and we have

(19) N = p‘n-m + 0(p\}(n—1) I p}(n—m+1)) .

Next, let » be odd. The dominant term now arises from A=1, and so
we have

(20) N = pr—m= 4 0(1)}.0&-—2) | pQ(N-—’m+1)) .

Suppose next that not all the a,,=0. We deduce the result from the
number of solutions N’ of the system in n+ 1 variables

(21) A2+ ..+, 2. va,22 =0, r=12 ...,m.
Denote by N’ the number of solutions with z,=0. Then

(22) N' =N"+ (p—1)N
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on writing @, z, etc. for &, when z,==0. Then, if n is even, we have from
(20), (21)

(p—1)N = pnti-m 4 0(p%<n~l) | pomiD) _ pnom 0(pt™™ | pImiDy
and so

(23) N = prm + O(pt™® | p}™™),  n 2 2m—2, neven.
Next let n be odd. Then

(p—~1)N = pri-m 1 O(pt* | ph2) 4 O(ph® | phermi) — pnom,
and so

(24) N = pr-m + O(p¥™2 | @), n 2 2m—1, nodd.

When m =2, we find the precise result from (18) and (22) on taking
A=0, 1 and noting the terms that vanish.
If n is even,

(p—1)N = p™! + "pt™ D (p-1) Zn' JI (M{T;“zs“lr) _

$=0 r+s P
— "2 — Snp!(n—x;)z (AlAz .- f‘_lﬂ) ’
or ty, tg P
(25) N = pt 4 ephed X [T (w}r) _
8=0 r<s P
— ptrHp_1)t 3 (11114_2_442) .
t1, L2 p

We can of course get rid of the factor (p—1)-1 by using (9).
If » is odd,

(p-—l)N — pn—l + 8n+1p;-(n—3)2 _

(A0A1 An) _ s

ty, 8 p
_ en—lpé(n—3) (p—1) 2': IZ (alsazr - azsalr)
or 8=1 r+s p
n
(26) N = pr2 — gripied 31 gy (alsaZr"‘ azs“u) +
8=1 r+s p

+ Hiptnd(p 1)1 3 (M) .
t1, t2 p

When a,,=0, a,,=0, (18) gives
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n even:
N = p" 2% 4 gnpit—® 37 (Al An) ’
(27) i1, P
n odd:
N = pn—z + 8n—1p§<n-3) I)ZH (Chsdzr azﬂu) .
s=1 r=s p

The results found were subject to restrictions on the value of =, for
example n=2m. It does not seem easy to find good results when these
restrictions are removed. I can find for (5) only

(28) N = prm 4 0,

obtained by allowing n—m—1 of the variables to take arbitrary
values. For then, on solving with respect to the m variables z,, z,, . ., %,
we have, say, the system

z2 = a,2% + b, r=12...m.

The number of solutions of this is given by

-2 a1+ ()

i a,x+b, x 5
SR () (- () e 202).
x r=1 P p g T p
say, where g=g() is the product of at most m+1 linear factors. By
Weil’s result, if (g(x)/p) is independent of ,
N' =p+ 0@ph).

Otherwise, N'=0(p), and a condition is imposed on the (x). In either
case, (28) follows.
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