NOTE ON SIMULTANEOUS QUADRATIC CONGRUENCES

L. J. MORDELL

Let p be an odd prime and let

$$f(x) = a_1 x_1^2 + \ldots + a_n x_n^2 + a_0,$$

where the a's are integers and $a_1 a_2 \dots a_n \equiv 0 \pmod{p}$. It is well known (cf. [1, p. 491]) that the number N_1 of solutions of

$$f(x) \equiv 0 \pmod{p}$$

can be expressed in a simple form. Since all the congruences throughout this paper are taken mod p, we shall omit mod p hereafter. Then with the usual Legendre symbol, we have the results:

(2)
$$\begin{cases} \frac{n \text{ even:}}{N_1 = p^{n-1} - p^{\frac{1}{2}n-1} \left(\frac{(-1)^{\frac{1}{2}n} a_1 a_2 \dots a_n}{p} \right), & a_0 \equiv 0, \\ N_1 = p^{n-1} + (p-1) p^{\frac{1}{2}n-1} \left(\frac{(-1)^{\frac{1}{2}n} a_1 a_2 \dots a_n}{p} \right), & a_0 \equiv 0. \end{cases}$$

(3)
$$\begin{cases} \frac{n \text{ odd:}}{N_1 = p^{n-1} + p^{\frac{1}{2}(n-1)} \left(\frac{(-1)^{\frac{1}{2}(n+1)} a_0 a_1 \dots a_n}{p} \right), & a_0 \equiv 0, \\ N_1 = p^{n-1}, & a_0 \equiv 0. \end{cases}$$

In particular, when p is large, we have various estimates

(4)
$$N_1 = p^{n-1} + O(p^{\frac{1}{2}n-\delta}), \quad \delta = 1, 0, \frac{1}{2}, \frac{1}{2}n$$

uniformly in the constants a. These results, however, can be found without a knowledge of the exact results.

Let us now consider the number N of solutions of the m < n simultaneous congruences in the n variables x_1, x_2, \ldots, x_n

(5)
$$f_r(x) = a_{r1}x_1^2 + \ldots + a_{rn}x_n^2 + a_{r0} \equiv 0, \qquad r = 1, 2, \ldots, m.$$

Received April 3, 1957.

We cannot expect to find exact formulae for N comparable in simplicity with (2) and (3). Surprisingly enough when all the $a_{r0} \equiv 0$, and m=2 and n is odd, the result expresses itself in a form (27) similar to (2) when $a_0 \equiv 0$. The exact results for N are not without interest and in some general cases lead to results of the types (4). They are not best possible for m>2, but I give a conjecture for the best possible result. The results will be more interesting and less complicated if we impose the restriction that when all the $a_{r0} \equiv 0$, the congruences (5) are linearly independent in respect of every set of m variables taken from the n variables x_1, x_2, \ldots, x_n . But when the a_{r0} are not all $\equiv 0$, we assume that the congruences (5) are linearly independent in respect of every set of m variables taken from the n+1 variables x_1, x_2, \ldots, x_n , 1.

We shall see that the value of N can be expressed in terms of sums S_l , $l=0, 1, \ldots, m-1$, now defined. Write

$$B_r = b_{1r}t_1 + \ldots + b_{m-l,r}t_{m-l}, \qquad r = 0, 1, \ldots, n-l,$$

where the b's are easily expressed in terms of the a's.

Then

(6)
$$S_l = \sum_t \left(\frac{B_0 B_1 \dots B_{n-l}}{p} \right),$$

where the summation is taken over a complete set of residues for each of the m-l variables t. The estimation of sums such as S_l seems to be very difficult except when n-l is even. Then $S_l=0$ as is seen on replacing t_1,\ldots,t_{m-l} by $tt_1,\ldots tt_{m-l}$ where t is a quadratic nonresidue of p. When n-l is odd and m-1 < n when all the $a_{n0} \equiv 0$, I suggest the best possible result

(7)
$$S_{l} = O(p^{\frac{1}{2}(m-l+1)}).$$

This is true when m-l=2 as follows from a deep result by Weil in the theory of algebraic function fields cf. [2]. Thus

(8)
$$S_{l} = \sum_{t} \prod_{r=0}^{n-l} \left(\frac{b_{1r}t_{1} + b_{2r}t_{2}}{p} \right).$$

When $t_2 \equiv 0$, put $t_1 = tt_2$. Then

(9)
$$S_{l} = (p-1) \sum_{t} \prod_{r=0}^{n-l} \left(\frac{b_{1r}t + b_{2r}}{p} \right) + (p-1) \prod_{r=0}^{n-l} \left(\frac{b_{1r}}{p} \right),$$

and Weil's result shows that in general, the first sum is $O(p^{\frac{1}{2}})$.

A crude estimate for S_l in (6) is obtained by taking m-l-1 of the variables t arbitrarily. Then on noting Weil's result in (9)

$$S_l = O(p^{m-l-\frac{1}{2}}),$$

we find the following results.

Suppose first that n is even. If all the $a_{r0} \equiv 0$,

(10)
$$N = p^{n-m} + O(p^{\frac{1}{2}(n-1)} | p^{\frac{1}{2}(n-m+1)}), \quad n \geq 2m,$$

where the stroke separates the crude estimate on the left from the conjectured estimate on the right. If not all the $a_{r0} \equiv 0$,

(11)
$$N = p^{n-m} + O(p^{\frac{1}{2}(n-3)} \mid p^{\frac{1}{2}(n-m)}), \qquad n \ge 2m-2.$$

Next let n be odd. When all the $a_{r0} \equiv 0$,

$$(12) N = p^{n-m} + O(p^{\frac{1}{2}n-1} \mid p^{\frac{1}{2}(n-m+1)}), n \ge 2m-1.$$

When not all the $a_{r0} \equiv 0$,

(13)
$$N = p^{n-m} + O(p^{\frac{1}{2}n-1} | p^{\frac{1}{2}(n-m)}), \qquad n \geq 2m-1.$$

When n does not satisfy the inequalities in (10) etc., I can find only the crude result

$$(14) N = p^{n-m} + O(p^{n-m-\frac{1}{2}}),$$

which, however, is best possible when m=n-2 or n-1, except when all the $a_{n}\equiv 0$.

The results for m=2 are given in (25) and (26).

We consider first the case when all the $a_{r0} \equiv 0$. We may suppose then that m < n-1 since if m = n-1, the congruences give the ratios of $x_1^2: x_2^2: \ldots$. Write $e(x) = e^{2\pi i x/p}$. Then the number of solutions of the congruences (5) is given by the formula

(15)
$$p^{m}N = \sum_{t,x} e(t_{1}f_{1}(x) + \ldots + t_{m}f_{m}(x)),$$

summed over a complete set of residues for each of t_1, \ldots, t_m and x_1, \ldots, x_n . For clearly the general term of the sum in (15) is zero or p^m according as x is not or is a solution of (5). Hence

(16)
$$p^m N = \sum_{t,x} e(A_1 x_1^2 + \ldots + A_n x_n^2),$$

where

(17)
$$A_r = a_{1r}t_1 + \ldots + a_{mr}t_m, \qquad r = 1, 2, \ldots, n.$$

When all the t's $\equiv 0$, the corresponding terms on the right hand side

give p^n . To evaluate the other terms, we require the well known Gauss' sum

$$\sum_{x} e(ax^{2}) = \begin{cases} \varepsilon\left(\frac{a}{p}\right) p^{\frac{1}{2}}, & a \equiv 0, \text{ where } \varepsilon = i^{\frac{1}{4}(p-1)^{2}} \\ p, & a \equiv 0. \end{cases}$$

Suppose now the t's are such that only λ (where $0 \le \lambda < m$) of the A_1, \ldots, A_n are $\equiv 0$. Since any m A's are linearly independent, this is allowable and not all the t's are $\equiv 0$. Suppose then that $A_1', A_2', \ldots, A_{\lambda'}$ are all $\equiv 0$. Summing for the x's, the sums in x_1, \ldots, x_{λ} each give p, and so we have

(18)
$$p^m N = p^n + \sum_{\lambda=0}^{m-1} \left[\varepsilon^{n-\lambda} p^{\frac{1}{2}(n+\lambda)} \sum_{t} \left(\frac{A_{\lambda+1}' \dots A_{n}'}{p} \right) \right],$$

where the sum in the t's involve $m-\lambda$ independent variables t' obtained by eliminating $t_1', t_2', \ldots, t_{\lambda}'$ by using $A_1' \equiv 0, \ldots A_{\lambda}' \equiv 0$. The summation in λ is also to include every selection of λ forms from the A's.

The general term in the t summation in (18) is zero when $n-\lambda$ is odd as is evident on writing t_1, t_2, \ldots for t_1, t_2, \ldots , where t is a nonquadratic residue of p. We suppose then that $n-\lambda$ is even. Then since from (7), (7'), the crude and the conjectured estimates for the t summations are $O(p^{m-\lambda-\frac{1}{2}})$, $O(p^{\frac{1}{2}(m-\lambda+1)})$, respectively, we have

$$p^m N = p^n + \sum_{\lambda=0}^{m-1} O(p^{m+\frac{1}{2}(n-\lambda-1)} \mid p^{\frac{1}{2}(m+n+1)}).$$

Suppose first that n is even. Then the dominant term here arises from $\lambda = 0$, and we have

(19)
$$N = p^{n-m} + O(p^{\frac{1}{2}(n-1)} \mid p^{\frac{1}{2}(n-m+1)}).$$

Next, let n be odd. The dominant term now arises from $\lambda = 1$, and so we have

(20)
$$N = p^{n-m} + O(p^{\frac{1}{2}(n-2)} \mid p^{\frac{1}{2}(n-m+1)}).$$

Suppose next that not all the $a_{r0} \equiv 0$. We deduce the result from the number of solutions N' of the system in n+1 variables

(21)
$$a_{r1}x_1^2 + \ldots + a_{rn}x_n^2 + a_{r0}x_0^2 \equiv 0, \quad r = 1, 2, \ldots, m.$$

Denote by N" the number of solutions with $x_0 \equiv 0$. Then

$$(22) N' = N'' + (p-1)N$$

on writing x_1x_0 etc. for x_1 when $x_0 \not\equiv 0$. Then, if n is even, we have from (20), (21)

$$(p-1)N = p^{n+1-m} + O(p^{\frac{1}{2}(n-1)} \mid p^{\frac{1}{2}(n-m+2)}) - p^{n-m} + O(p^{\frac{1}{2}(n-1)} \mid p^{\frac{1}{2}(n-m+1)}),$$
 and so

(23)
$$N = p^{n-m} + O(p^{\frac{1}{2}(n-3)} | p^{\frac{1}{2}(n-m)}), \quad n \ge 2m-2, n \text{ even }.$$

Next let n be odd. Then

$$(p-1)N = p^{n+1-m} + O(p^{\frac{1}{2}n} \mid p^{\frac{1}{2}(n-m+2)}) + O(p^{\frac{1}{2}(n-2)} \mid p^{\frac{1}{2}(n-m+1)}) - p^{n-m},$$
 and so

(24)
$$N = p^{n-m} + O(p^{\frac{1}{2}(n-2)} | p^{\frac{1}{2}(n-m)}), \quad n \ge 2m-1, \quad n \text{ odd }.$$

When m=2, we find the precise result from (18) and (22) on taking $\lambda=0$, I and noting the terms that vanish.

If n is even,

 \mathbf{or}

 \mathbf{or}

$$\begin{split} (p-1)N &= p^{n-1} + \varepsilon^n p^{\frac{1}{2}(n-2)} (p-1) \sum_{s=0}^n \prod_{r+s} \left(\frac{a_{1s} a_{2r} - a_{2s} a_{1r}}{p} \right) - \\ &- p^{n-2} - \varepsilon^n p^{\frac{1}{2}(n-4)} \sum_{t_1, t_2} \left(\frac{A_1 A_2 \dots A_n}{p} \right), \end{split}$$

$$(25) N = p^{n-2} + \varepsilon^n p^{\frac{1}{2}(n-2)} \sum_{s=0}^n \prod_{r+s} \left(\frac{a_{1s} a_{2r} - a_{2s} a_{1r}}{p} \right) - \varepsilon^n p^{\frac{1}{2}(n-4)} (p-1)^{-1} \sum_{t_1, t_2} \left(\frac{A_1 A_2 \dots A_n}{p} \right).$$

We can of course get rid of the factor $(p-1)^{-1}$ by using (9). If n is odd,

$$(p-1)N = p^{n-1} + \varepsilon^{n+1} p^{\frac{1}{2}(n-3)} \sum_{t_1, t_2} \left(\frac{A_0 A_1 \dots A_n}{p} \right) - p^{n-2} -$$

$$- \varepsilon^{n-1} p^{\frac{1}{2}(n-3)} (p-1) \sum_{s=1}^n \prod_{r+s} \left(\frac{a_{1s} a_{2r} - a_{2s} a_{1r}}{p} \right)$$

 $(26) N = p^{n-2} - \varepsilon^{n-1} p^{\frac{1}{2}(n-3)} \sum_{s=1}^{n} \prod_{r+s} \left(\frac{a_{1s} a_{2r} - a_{2s} a_{1r}}{p} \right) + \\ + \varepsilon^{n+1} p^{\frac{1}{2}(n-3)} (p-1)^{-1} \sum_{r+t_0} \left(\frac{A_0 A_1 \dots A_n}{p} \right).$

When $a_{10} \equiv 0$, $a_{20} \equiv 0$, (18) gives

(27)
$$\begin{cases} \frac{n \text{ even:}}{N = p^{n-2} + \varepsilon^n p^{\frac{1}{2}(n-4)} \sum_{i_1, i_2} \left(\frac{A_1 \dots A_n}{p} \right), \\ \frac{n \text{ odd:}}{N = p^{n-2} + \varepsilon^{n-1} p^{\frac{1}{2}(n-3)} (p-1) \sum_{s=1}^n \prod_{r=s} \left(\frac{a_{1s} a_{2r} - a_{2s} a_{1r}}{p} \right). \end{cases}$$

The results found were subject to restrictions on the value of n, for example $n \ge 2m$. It does not seem easy to find good results when these restrictions are removed. I can find for (5) only

$$(28) N = p^{n-m} + O(p^{n-m-\frac{1}{2}}),$$

obtained by allowing n-m-1 of the variables to take arbitrary values. For then, on solving with respect to the m variables x_1, x_2, \ldots, x_m , we have, say, the system

$$x_r^2 \equiv a_r x^2 + b_r, \qquad r = 1, 2, \ldots m.$$

The number of solutions of this is given by

$$\begin{split} N' &= \sum_x \prod_{r=1}^m \left(1 \,+\, \left(\frac{a_r x^2 + b_r}{p}\right)\right) \\ &= \sum_x \prod_{r=1}^m \left(1 \,+\, \left(\frac{a_r x + b_r}{p}\right)\right) \left(1 \,+\, \left(\frac{x}{p}\right)\right) = p \,+\, \sum_q \sum_x \left(\frac{g(x)}{p}\right)\,, \end{split}$$

say, where g = g(x) is the product of at most m+1 linear factors. By Weil's result, if (g(x)/p) is independent of x,

$$N' = p + O(p^{\frac{1}{2}}).$$

Otherwise, N' = O(p), and a condition is imposed on the (x). In either case, (28) follows.

REFERENCES

- P. Bachmann, Die Arithmetik der quadratischen Formen, Erste Abtheilung, Leipzig, 1898.
- A. Weil, On the Riemann hypothesis in function fields, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 345-347.

ST. JOHN'S COLLEGE, CAMBRIDGE, ENGLAND AND UNIVERSITY COLLEGE, ACHIMOTA, GOLD COAST