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REGULARITY OF VILLADSEN ALGEBRAS AND
CHARACTERS ON THEIR CENTRAL

SEQUENCE ALGEBRAS

MARTIN S. CHRISTENSEN

Abstract
We show that if A is a simple Villadsen algebra of either the first type with seed space a finite
dimensional CW complex, or of the second type, then A absorbs the Jiang-Su algebra tensorially
if and only if the central sequence algebra of A does not admit characters.

Additionally, in a joint appendix with Joan Bosa (see the following paper), we show that
the Villadsen algebra of the second type with infinite stable rank fails the Corona Factorization
Property, thus providing the first example of a unital, simple, separable and nuclear C∗-algebra
with a unique tracial state which fails to have this property.

1. Introduction

Villadsen algebras, introduced by Villadsen in [35] and [36], respectively, fall
into two types and both display properties not previously observed for simple
AH algebras. Together they form a class of unital, simple and separable AH
algebras exhibiting a wide range of exotic behaviour; arbitrary stable and real
rank, arbitrary radius of comparison, and perforation in their orderedK0 groups
and Cuntz semigroups.

The first type of Villadsen algebras was introduced in [35] as the first ex-
amples of unital, simple AH algebras with perforation in their ordered K0

groups. In particular, they were the first examples of simple AH algebras
without slow dimension growth. Modifying the construction, Toms exhib-
ited for each positive real number r > 0 a unital, simple AH algebra with
rate of growth r (in the sense that the radius of comparison is r); see [33].
The techniques introduced by Villadsen also played a crucial role in Rørdam’s
construction in [27] of a simple, separable and nuclear C∗-algebra in the UCT
class containing an infinite and a non-zero finite projection, the first counter-
example to the Elliott conjecture in its previous incarnation. In [32], Toms used
a modification of the AH algebras in [35] to provide a particularly egregious
counterexample to the previous Elliott conjecture. Toms and Winter gave a
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formal definition of Villadsen algebras of the first type in [34], which includes
Villadsen’s original constructions, and the subsequent modifications of Toms
in [32] and [33]. In the same paper they confirmed what has later been named
the Toms-Winter conjecture for this class of C∗-algebras, i.e., they showed
that for a simple Villadsen algebra of the first type with seed space a finite di-
mensional CW complex (see Definition 3.2), the regularity properties Jiang-Su
stability, strict comparison of positive elements, and finite decomposition rank
are equivalent. The latter regularity property, or even the weaker requirement
of finite nuclear dimension, has since been proven to suffice for classification,
under the additional assumption of UCT (the complete proof of this has a long
history and is the work of many hands, but the final steps were carried out
in [12], [6] and [29]).

The second type of Villadsen algebras was introduced in [36] as the first
examples of simple AH algebras with stable rank higher than one. In fact,
every possible value of the stable rank is achieved, i.e., for each 1 ≤ k ≤ ∞
a unital, simple AH algebra Vk is constructed such that sr(Vk) = k + 1, and
the real rank satisfies k ≤ RR(Vk) ≤ k + 1. In addition, each C∗-algebra Vk
has a unique tracial state and perforation in the orderedK0 group, in particular
Vk ⊗ Z �∼= Vk . Ng and Kucerovsky showed in [18] that V2 has the Corona
Factorization Property, thus providing the first example of a simpleC∗-algebra
satisfying this property while having perforation in the orderedK0 group. The
construction also formed the basis for Toms’ counterexample to the previous
Elliott conjecture in [30].

As indicated in the preceding paragraphs, the class of Villadsen algebras
form a rich class containing examples of both regular C∗-algebras and C∗-
algebras displaying a wide range of irregularity, while still remaining amenable
to analysis. As such, they form a good ‘test class’ for statements concerning
simple and nuclear C∗-algebras.

The central sequence algebra of a unital separable C∗-algebra A (see Sec-
tion 2.1 for a definition), which we denote F(A), was studied extensively
by Kirchberg in [14], wherein the notation F(A) was introduced, and the
definition of F(A) was extended to not necessarily unital C∗-algebras in a
meaningful way (for instance, F(A) is unital whenever A is σ -unital, and the
assignment A �→ F(A) is a stable invariant). In analogy with the von Neu-
mann central sequence algebra of II1-factors, the central sequence algebra
detects absorption of certain well-behaved C∗-algebras. More precisely, if B
is a unital, separable C∗-algebra with approximately inner half-flip (i.e., the
two factor embeddings B → B ⊗ B are approximately unitarily equivalent),
then A⊗ B ∼= A if there exists a unital embedding B → F(A). If, moreover,
B ∼= ⊗∞

n=1 B, e.g., when B is the Jiang-Su algebra Z , thenA⊗B ∼= A if and
only if such an embedding exists. Significant progress in our understanding
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of the central sequence algebra of stably finite C∗-algebras was obtained by
Matui and Sato in [19], [20]. In these papers they introduced property (SI), a
regularity property which facilitates liftings of certain properties of a tracial
variant of the central sequence algebra to the central sequence algebra itself
(see for instance [15, Proposition 3.9]). Furthermore, they prove that whenever
A is a unital, simple, separable and nuclearC∗-algebra with strict comparison,
then A has property (SI) and as a consequence, if A has only finitely many
extremal tracial states, then Z embeds unitally in F(A) hence A⊗ Z ∼= A.

Prompted by the analogy with von Neumann II1-factors one might hope
that the McDuff dichotomy (see [21]) carries over to C∗-algebras. However,
as proven by Ando and Kirchberg in [1], the central sequence algebra F(A) is
non-abelian whenever A is separable and not type I. In addition, it can happen
that F(A) is non-abelian and contains no simple, unital C∗-algebra other than
C (see [14, Corollary 3.14]). Hence, non-commutativity of F(A) does not
suffice to conclude regularity. Addressing this issue, Kirchberg and Rørdam
asked the following question in [15].

Question 1.1. LetA be a unital and separableC∗-algebra. Does it follows
that A⊗ Z ∼= A if and only if F(A) has no characters?

Another question under consideration in the present paper is the following:
given a unital, simple C∗-algebra A with a unique tracial state, when can one
conclude that A is regular? In certain situations, a unique tracial state is suf-
ficient to conclude regularity and even classifiability by the Elliott invariant.
For instance, Elliott and Niu showed in [7] that if X is a compact metriz-
able Hausdorff space and σ is a minimal homeomorphism of X such that the
dynamical system (X, σ ) is uniquely ergodic, i.e., C(X) �σ Z has a unique
tracial state, thenC(X)�σ Z is Z -stable and classifiable (this is not automatic,
see [10]). Similarly, as proven by Niu (see [23, Theorem 1.1]) if A is a unital,
simple AH algebra with diagonal maps such that the set of extremal tracial
states is countable, then A is without dimension growth. In particular, any AH
algebra of this type with a unique tracial state has real rank zero (cf. [3]). On
the other hand, as demonstrated in [36], a unique tracial state does not suffice
to conclude either real rank zero or Z stability for general AH algebras. It is
therefore natural to ask what (if any) regularity properties are implied by the
existence of a unique tracial state.

The Corona Factorization Property was introduced by Kucerovsky and Ng
in [17] and is related to both the theory of extensions and the question of when
extensions are automatically absorbing (see for instance [16]). It is a very
mild regularity condition, which nonetheless does exclude the most exotic
behaviour. For instance, if A is a separable C∗-algebra satisfying the Corona
Factorization Property and Mn(A) is stable for some n ∈ N then A must also
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be stable (see [24, Proposition 4.7]). Under the additional assumption that A
is simple and has real rank zero it also follows that A is either stably finite
or purely infinite. Examples of C∗-algebras failing the Corona Factorization
Property have been provided in the literature. For instance, the C∗-algebras
constructed in [27] and [26] fail the Corona Factorization Property.

The main result of the present paper is that Question 1.1 has an affirmative
answer when A is either a simple Villadsen algebra of the first type with seed
space a finite dimensional CW complex or a Villadsen algebra of the second
type (see Theorem 3.5 and Corollary 4.4 respectively).

Additionally, in a joint appendix with Joan Bosa (see the following paper),
we show that the Villadsen algebra of the second type with infinite stable rank
fails to have the Corona Factorization Property, thus providing an example of
a unital, simple, separable and nuclear C∗-algebra with a unique tracial state
which fails this property (see Theorem A.1). While examples of unital, simple,
separable and nuclear C∗-algebras without the Corona Factorization Property
are already known, as noted above, the example provided here is to the best of
the authors’ knowledge the first of its kind with a unique tracial state.

2. Background

2.1. The central sequence algebra

Let A be a unital C∗-algebra, ω be a free ultrafilter on N and �∞(A) denote
the sequences (an)n ⊆ A such that supn ‖an‖ < ∞. The ultrapower Aω of A
with respect to ω is defined by

Aω := �∞(A)
/ {
(an)n ∈ �∞(A)

∣∣ lim
n→ω

‖an‖ = 0
}
.

Given a sequence (an)n ∈ �∞(A) let [(an)n] ∈ Aω denote the image un-
der the quotient map. There is a natural embedding ι:A → Aω given by
ι(a) = [(a, a, a, . . .)]. Since ι is injective it is often suppressed and A is con-
sidered to be a subalgebra ofAω, a convention we shall follow here. The central
sequence algebra F(A) of A is defined by F(A) := Aω ∩ A′. The notation
F(A)was introduced by Kirchberg in [14], wherein the definition of the central
sequence algebra was extended to (possibly non-unital) σ -unital C∗-algebras
in a meaningful way. We retain this notation, although only unital C∗-algebras
are considered here, to emphasize the connection with Kirchberg’s work. Fur-
thermore, the ultrafilter is suppressed in the notation, since the isomorphism
class of (unital) separable sub-C∗-algebras B ⊆ F(A) is independent of the
choice of free ultrafilter. More precisely, if B is a separable C∗-algebra and
there exists a (unital) injective ∗-homomorphism B → Aω ∩ A′ for some
free ultrafilter ω on N, then there exists a (unital) injective ∗-homomorphism
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B → Aω′ ∩A′ for any other free ultrafilter ω′ on N. In particular, the question
of whether F(A) has characters is independent of the choice of free ultrafilter
(see [15, Lemma 3.5]). Whether Aω ∩ A′ ∼= Aω′ ∩ A′ for arbitrary free ultra-
filters ω and ω′ on N depends on the Continuum Hypothesis (see [9] and [8,
Theorem 5.1]).

As described in [15], building on results from [25], there is a useful rela-
tionship between divisibility properties of F(A) and comparability properties
of Cu(A). We rely on an elaboration of this technique to obtain our results.

2.2. Vector bundles and characteristic classes

Readers who are unfamiliar with the theory of characteristic classes of (com-
plex) vector bundles may wish to consult [22] for a general textbook on the
subject. Alternatively, the papers [27] and [35] also contains good summaries
of (the relevant parts of) the theory.

In order to access the machinery of characteristic classes within the frame-
work of C∗-algebras we need the following observation. Let K denote the
compact operators acting on a separable, infinite-dimensional Hilbert space
H , let p ∈ C(X)⊗K be a projection and let ξp denote vector bundle over X
given by

ξp := {(x, v) ∈ X × H | v ∈ p(x)(H )}.
It is a consequence of Swan’s Theorem that the assignment p �→ ξp induces
a one-to-one correspondence of Murray-von Neumann equivalence classes of
projections in C(X) ⊗ K with isomorphism classes of vector bundles over
X, in such a way that q � p if and only if there exists a vector bundle η
over X such that ξq ⊕ η ∼= ξp. We shall be concerned with the ordering of
vector bundles according to the above described pre-order. For this purpose
we employ the machinery of characteristic classes of vector bundles described
below, a technique pioneered by Villadsen in [35] and [36].

Given a compact Hausdorff spaceX and vector bundleω of (complex) fibre
dimension k, the total Chern class c(ω) ∈ H ∗(X) is

c(ω) = 1 +
∞∑
i=1

ci(ω),

where cj (ω) ∈ H 2j (X) is the j ’th Chern class for each 1 ≤ j ≤ k, and
cj (ω) = 0 whenever j > k. Furthermore, the top Chern class ck(ω) is the
Euler class e(ω) of ω. We will simply refer to c(ω) as the Chern class of ω,
rather than the total Chern class. The Chern class has the following properties:

(i) if θk denotes the trivial vector bundle of fibre dimension k ∈ N, then
c(θk) = 1 ∈ H 0(X) for any k ∈ N;
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(ii) for arbitrary vector bundles ω, η over X we have c(ω⊕ η) = c(ω)c(η),
where the product is the cup product in the cohomology ring H ∗(X);

(iii) if Y is another compact Hausdorff space and f :Y → X is continuous
then c(f ∗(ω)) = f ∗(c(ω)).

Properties (ii) and (iii) above also holds for the Euler class, while the first
property instead becomes e(θk) = 0 for all k ∈ N. This can be deduced from
the above description of the Chern class.

In the following sections it will suffice to find a reasonably good method
for determining which Chern classes of a vector bundle are non-zero. Such a
method is provided by the following observation. Given a finite number of sets
X1, . . . , Xn, let ρj :X1 ×· · ·×Xn → Xj denote the j ’th coordinate projection.
If each of the spacesX1, . . . , Xn is a finite CW-complex such thatHi(Xj ) is a
free Z-module for each i and j , it follows from the Künneth formula (see [22,
Theorem A.6]) that the map

μ:Hi1(X1)⊗Hi2(X2)⊗ · · · ⊗Hin(Xn) → Hi(X1 ×X2 × · · · ×Xn),

where i = ∑n
k=1 ik , given by

a1 ⊗ a2 ⊗ · · · ⊗ an �→ ρ∗
1 (a1)ρ

∗
2 (a2) · · · ρ∗

n(an),

is injective. A particular application of this observation is the following. Sup-
pose thatX1, . . . , Xn satisfies the hypothesis above and, for each i = 1, . . . , n,
that ξi is a vector bundle overXi such that e(ξi) ∈ H ∗(Xi) is non-zero for i =
1, . . . , n. Since eachHi(Xj ) is without torsion, the element e(ξ1)⊗· · ·⊗e(ξn)
is also non-zero, whence it follows from naturality of the Euler class and the
product formula above that

e
(
ρ∗

1 (ξ1)⊕ ρ∗
2 (ξ2)⊕ · · · ⊕ ρ∗

n(ξn)
) = ρ∗

1 (e(ξ1))ρ
∗
2 (e(ξ2)) . . . ρ

∗
n(e(ξn))

= μ(e(ξ1)⊗ · · · ⊗ e(ξn)) �= 0.

We will apply this observation only to the situation where each Xi is either of
the form (S2)k for some k or a complex projective space CP k , in which case
the hypothesis’ are satisfied.

2.3. The Cuntz semigroup, comparison and divisibility

We give a brief introduction to the Cuntz semigroup as defined in [5]. We
restrict our attention to the properties needed in the current exposition, and
interested readers should consult [5] or [2] for a fuller exposition.

LetA be a C∗-algebra and let a, b ∈ A+. We say that a is Cuntz dominated
by b, and write a � b, if there exists a sequence (xn)n ⊆ A such that ‖a −
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x∗
nbxn‖ → 0. We say that a is Cuntz equivalent to b, and write a ∼ b, if
a � b and b � a. LetK denote the compact operators on a separable, infinite-
dimensional Hilbert space and define

Cu(A) := (A⊗K)+/∼ .

We write 〈a〉 for the equivalence class of an element a ∈ (A⊗K)+. Then Cu(A)
becomes an ordered abelian semigroup when equipped with the operation

〈a〉 + 〈b〉 := 〈a ⊕ b〉, a, b ∈ (A⊗K)+

and order defined by 〈a〉 ≤ 〈b〉 if and only if a � b. Additionally, any upwards
directed countable setS ⊆ Cu(A) admits a supremum. Given x, y ∈ Cu(A)we
say that x is compactly contained in y, and write x � y, if for any increasing
sequence (yk)k ⊆ Cu(A) with supk yk = y there exists k0 ∈ N such that
x ≤ yk0 . Equivalently, if a, b ∈ (A⊗K)+ then 〈a〉 � 〈b〉 if and only if there
exists ε > 0 such that a � (b− ε)+. An element x ∈ Cu(A) satisfying x � x

is said to be compact. Note that 〈p〉 is compact whenever p ∈ (A⊗ K)+ is a
projection.

The following proposition is a strengthening of [15, Theorem 4.9] with
essentially the same proof. Although the strengthening is minor, it is crucial
to Theorem 3.5 and Corollary 4.4.

Proposition 2.1. Let A be a unital, separable C∗-algebra. If F(A) has no
characters, then for each m ∈ N there exists n ∈ N such that the following
holds: given x, y1, . . . , yn ∈ Cu(A) such that x ≤ myi for all i = 1, . . . , n,
then x ≤ ∑n

i=1 yi .

Proof. It follows from [15, Lemma 3.5] that there exists a unital, separ-
able sub-C∗-algebra B ⊆ F(A) such that B has no characters. Hence, [25,
Corollary 5.6(i) and Lemma 6.2] imply that for eachm ∈ N there exists n ∈ N
such that the infinite maximal tensor product C∗-algebra D := ⊗

k∈N B is
weakly (m, n)-divisible, i.e., there exist elements y1, . . . , yn ∈ Cu(D) satis-
fying myi ≤ 〈1D〉, for all i = 1, . . . , n, and 〈1D〉 ≤ ∑n

j=1 yj . Note that since
B ⊆ F(A) is unital and separable, it follows from [14, Corollary 1.13] that
there exists a unital ∗-homomorphism ϕ:D → F(A). Let P ⊆ Aω denote
the image under the natural map A ⊗max D → Aω. By [15, Lemma 4.1] the
induced map Cu(A) → Cu(P ) is an order embedding, and therefore the result
finally follows from [25, Lemma 6.1].
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3. Villadsen algebras of the first type

In this section we study Villadsen algebras of the first type, as defined by Toms
and Winter in [34] based on the construction by Villadsen in [35]. We prove
that for a simple Villadsen algebra A of the first type with seed space a finite
dimensional CW complex, F(A) has no characters if and only if A has strict
comparison of positive elements (Theorem 3.5). We also note in passing that if
A is not an AF algebra, then A has real rank zero if and only if it has a unique
tracial state (Proposition 3.6).

For the readers convenience we recall the definition of a Villadsen algebra
of the first type (see also [34]).

Definition 3.1. Let X, Y be a compact Hausdorff spaces and n,m ∈ N
be given such that n | m. A ∗-homomorphism ϕ:Mn ⊗ C(X) → Mm ⊗ C(Y )

is said to be diagonal if it has the form

f �→

⎛
⎜⎜⎜⎜⎝
f ◦ λ1 0 · · · 0

0 f ◦ λ2
...

...
. . . 0

0 · · · 0 f ◦ λm/n

⎞
⎟⎟⎟⎟⎠ ,

where each λi :Y → X is a continuous map for i = 1, . . . , m/n. The maps
λ1, . . . , λm/n are called the eigenvalue maps of ϕ.

The map ϕ above is said be a Villadsen map of the first type (a V I-map)
if Y = Xk for some k ∈ N and each eigenvalue map is either a coordinate
projection or constant.

Note that, in contrast with the construction in [35], given a V I-map
ϕ:C(X) ⊗ Mn → C(Xk) ⊗ Mm as above, it is not necessary that the co-
ordinate projections that occur as eigenvalue maps for ϕ are distinct, nor that
every possible coordinate projection Xk → X occurs as an eigenvalue map
for ϕ.

Definition 3.2. Let X be a compact Hausdorff space and let (ni)i∈N and
(mi)i∈N be sequences of natural numbers with n1 = 1 and such thatmi | mi+1

and ni | ni+1 for all i ∈ N. Put Xi = Xni . A unital C∗-algebra A is said to
be a Villadsen algebra of the first type (a V I algebra) if it can be written as an
inductive limit

A ∼= lim−→(Mmi ⊗ C(Xi), ϕi)

where eachϕi is a V I-map. We refer to the above inductive system as a standard
decomposition for A with seed space X.
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Although not required in the above definition, we shall only consider simple
V I algebras in the present paper. Additionally, we require that the seed space is
a finite-dimensional CW complex. This is a particularly tractable class of C∗-
algebras, as demonstrated by the following theorem due to Toms and Winter.

Theorem 3.3 (See [34]). Let A be a simple V I algebra admitting a stand-
ard decomposition with seed space a finite-dimensional CW complex. The
following are equivalent:

(i) A has finite decomposition rank;

(ii) A is Z -stable;

(iii) A has strict comparison of positive elements;

(iv) A has slow dimension growth as an AH algebra.

It follows directly from Definition 3.2 that if X is a zero-dimensional CW
complex, i.e., is a finite discrete space, then the corresponding V I algebra
is a unital AF algebra. In the interest of the fluency of this exposition we
shall henceforth assume that dim(X) > 0, since the case dim(X) = 0 often
requires separate consideration, and unital, simple AF algebras are already
well-understood. We proceed to introduce some notation.

For each j ≥ i, let π(s)i,j denote the s’th coordinate projection Xj =
X
(nj /ni )

i → Xi . Following standard notation, we setϕi,j := ϕj−1◦· · ·◦ϕi , when
j > i, set ϕi,i to be the identity map on Mmi ⊗ C(Xi), and ϕi,j to be the zero
map when j < i. It is easy to check that ϕi,j :Mmi ⊗C(Xi) → Mmj ⊗C(Xj ) is
a V I-map whenever j > i. For each j > i, letEi,j denote the set of eigenvalue
maps of ϕi,j , and for each λ ∈ Ei,j let m(λ) denote the multiplicity of λ, i.e.,
the number of times λ occurs as an eigenvalue map of ϕi,j . Furthermore, let

E
(1)
i,j := {λ ∈ Ei,j | λ is a coordinate projection},

E
(2)
i,j := {λ ∈ Ei,j | λ is constant}.

We will refer to the eigenvalue maps λ ∈ E(2)i,j as point evaluations. For each
i < j , write ϕi,j = ψi,j ⊕ χi,j , where ψi,j is the diagonal ∗-homomorphism
corresponding to the eigenvalue maps of ϕi,j , which are contained inE(1)i,j , and
χi,j is the diagonal ∗-homomorphism corresponding to the eigenvalue maps of
ϕi,j , which are contained in E(2)i,j . Finally, we define the following numbers

N(i, j) := ∣∣E(1)i,j ∣∣, α(i, j) :=
∑
λ∈E(1)i,j

m(λ), M(i, j) :=
∑
λ∈Ei,j

m(λ).
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In other words,M(i, j) denotes the multiplicity (number of eigenvalue maps)
of ϕi,j , α(i, j) denotes the number of coordinate projections occurring in ϕi,j ,
whileN(i, j) denotes the number of different coordinate projections occurring
in ϕi,j . Note that when j > i we have

M(i, j) = M(i, j − 1)M(j − 1, j), N(i, j) = N(i, j − 1)N(j − 1, j),

α(i, j) = α(i, j − 1)α(j − 1, j),

and that 0 ≤ N(i,j)

M(i,j)
≤ α(i,j)

M(i,j)
≤ 1. In particular, the sequences(

N(i, j)

M(i, j)

)
j>i

and

(
α(i, j)

M(i, j)

)
j>i

are decreasing and convergent. Furthermore, setting ci = limj→∞ N(i,j)

M(i,j)
and

di = limj→∞ α(i,j)

M(i,j)
, the sequences (ci)i and (di)i are both increasing and

ci ≤ di for all i ∈ N. In fact, it is easy to check that either ci = 0 for all i ∈ N
or limi→∞ ci = 1. Similarly, either di = 0 for all i or limi→∞ di = 1 (see the
proof of [34, Lemma 5.1]).

During the proof of Theorem 3.5 we need the following Chern class ob-
struction, essentially due to Villadsen, and later refined by Toms in [32],[33]
and Toms-Winter in [34]. In the statement (and proof) of the lemma, we will
use the following notation: given a finite Cartesian power of spheres (S2)n,
and 1 ≤ j ≤ n, let ρj : (S2)n → S2 denote the j ’th coordinate projection.

Lemma 3.4. Let A be a Villadsen algebra which admits a standard de-
composition (Ai, ϕi) with seed space a finite-dimensional CW -complex X of
non-zero dimension. Furthermore, assume that, for some i ∈ N, there exist
n ∈ N, a closed subset Xi ⊇ K ∼= (S2)n and a positive element a ∈ Ai ⊗ K,
such that a|K is a projection for which the corresponding vector bundle ξ is
of the form ξ ∼= ρ∗

1 (η) ⊕ · · · ⊕ ρ∗
n(η), where η is a (complex) line bundle

over S2 with non-zero Euler class e(η). For each j > i define a closed subset
Ki,j ⊆ Xj by

Ki,j :=
nj /ni

s=1

K
(s)
i,j ,

where

K
(s)
i,j =

{
K, if π(s)i,j ∈ E(1)i,j ,

{xj }, otherwise.

and xj ∈ Xi . Let ξj denote the vector bundle over Ki,j corresponding to
ψi,j (a)|Ki,j . Then the nN(i, j)’th Chern class cnN(i,j)(ξj ) is non-zero.
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Proof. Note that Ki,j ∼= KN(i,j) ∼= (S2)nN(i,j). Since a|K is a projection,
it follows from the definition of ψi,j , that ψi,j (a)|Ki,j is a projection. As in the
statement above, let ξ denote the vector bundle corresponding to a|K and ξj
the vector bundle corresponding to ψi,j (a)|Ki,j . We easily deduce that

ξj ∼=
⊕
λ∈E(1)i,j

m(λ)⊕
j=1

λ∗(ξ).

Applying the Chern class to this equation, and using the product formula, we
obtain

c(ξj ) =
∏
λ∈E(1)i,j

m(λ)∏
j=1

c(λ∗(ξ)) =
∏
λ∈E(1)i,j

λ∗(c(ξ))m(λ).
Write E(1)i,j = {λ1, λ2, . . . , λN(i,j)}. For � = 1, . . . , N(i, j) and s = 1, . . . , n
set z�,s := λ∗

�

(
ρ∗
s (e(η))

)
. Since e(η)2 = 0 (recall that Hj(S2) = 0 for all

j > 2), we find that zm�,s = 0 for �, s and m > 1. By assumption, ξ ∼=
ρ∗

1 (η)⊕ · · · ⊕ ρ∗
n(η), whence

c(ξj ) =
N(i,j)∏
�=1

n∏
s=1

(1 + z�,s)
m(λ�) =

N(i,j)∏
�=1

n∏
s=1

(1 +m(λ�)z�,s).

Given a subset S ⊆ {1, . . . , n}, let z�,S := ∏
s∈S m(λ�)z�,s when S �= ∅ and

z�,∅ := 1 for all 1 ≤ � ≤ N(i, j). It follows from the above computation
that, for 1 < q ≤ rank(ξj ), the q’th Chern class cq(ξj ) can be computed
as

∑ ∏N(i,j)

�=1 z�,S� , where the sum ranges over all families {S�}� of subsets
S� ⊆ {1, . . . , n} such that

∑N(i,j)

�=1 |S�| = q. Now, supposing that {S�}� is a
family of subsets S� ⊆ {1, . . . , n} such that S�0 �= {1, . . . , n} for some �0, it
follows that

∑N(i,j)

�=1 |S�| < nN(i, j). In particular, we find that

cnN(i,j)(ξj ) =
N(i,j)∏
�=1

z�,{1,...,n} =
N(i,j)∏
�=1

n∏
s=1

m(λ�)z�,s .

It therefore follows from the Künneth formula that cnN(i,j)(ξj ) �= 0.

The following theorem is the main result of this section. The proof is based
on the proof of [34, Lemma 4.1]. However, since the statement of the following
theorem is different, the proof needs to be modified, and in the interest of clarity
of the exposition, we include a full proof.
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Theorem 3.5. Let A be a simple Villadsen algebra of the first type which
admits a standard decomposition (Ai, ϕi)with seed space a finite-dimensional
CW -complex. Then A has strict comparison (and hence A⊗ Z ∼= A) if and
only if F(A) has no characters.

Proof. AssumeA has strict comparison. Then it follows from Theorem 3.3
that A⊗ Z ∼= A, whence there exists a unital embedding Z → F(A). Since
Z has no characters it follows that F(A) does not admit a character either. We
show, using Proposition 2.1, that F(A) has at least one character if A does not
have strict comparison.

Fix n ≥ 2. Since A does not have strict comparison it follows from [34,
Lemma 5.1] that

lim
i→∞ lim

j→∞
N(i, j)

M(i, j)
= 1. (1)

Note that since dim(X) > 0 and A is simple, the number of point evaluations
occurring as eigenvalue maps in ϕi,j is unbounded as j → ∞ for any i ∈ N.
In particular, M(i, j) → ∞ as j → ∞, whence (1) implies dim(Xi) → ∞
as i → ∞. Hence, we may choose i ∈ N such that dim(Xi) ≥ 3n and

N(i, j)

M(i, j)
≥ 2n− 1

2n
, for all j > i. (2)

Choose an open subset O ⊆ Xi such that O ∼= (−1, 1)dim(Xi) =: D. Let

Y := {
x ∈ (−1, 1)3

∣∣ dist
(
x, (0, 0, 0)

) = 1/2
}

and
Z := {

x ∈ (−1, 1)3
∣∣ 1/3 ≤ dist

(
x, (0, 0, 0)

) ≤ 2/3
}
.

Furthermore, define closed subsets

K := Y
×n × {0}dim(Xi)−3n ⊆ D

and
Z := Z

×n × [−4/5, 4/5]dim(Xi)−3n ⊆ D.

Let Z0 denote the interior of Z and note that K ⊆ Z0. We identify K and Z
with their homeomorphic images in Xi and note that K ∼= (S2)n. For each
� = 1, . . . , n, letρ�: (S2)n → S2 denote the �’th coordinate projection. Choose
some line bundle η over S2 with non-zero Euler class e(η) (for instance the
Hopf bundle), and set η� := ρ∗

� (η). We consider each η� to be a vector bundle
overK . Furthermore, let θ2 denote the trivial vector bundle of fibre dimension 2
overK . It follows from [13, Proposition 9.1.2] that θ2 � η�⊕η�⊕η�, for each
� = 1, . . . , n, while θ2 �� ⊕n

�=1 η�, since the Euler class of the right-hand
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vector bundle is non-zero. We aim to construct positive elements in A such
that the above relationships between vector bundles persist in Cu(A).

Let pr:Z → Y be the projection along rays emanating from the origin and
let f :Xi → C be a continuous map satisfying f |K ≡ 1 and f |Xi\Z0 ≡ 0. Let
P :Z → K be given by

P = pr × · · · × pr︸ ︷︷ ︸
n times

× ev0 × · · · × ev0︸ ︷︷ ︸
dim(Xi)−3n times

,

where ev0(z) = 0 for any z ∈ (−1, 1). For each � = 1, . . . , n, let p� ∈
C(Z,K) denote the projection corresponding to P ∗(η�) and let p′ ∈ C(Z,K)
denote the projection corresponding to P ∗(θ2). Define elements b�, a ∈ Ai ,
for � = 1, . . . , n, by b� := f ·p� and a := f ·p′. Since f ∈ Ai is central, and
p′ � p�⊕p�⊕p� for each � = 1, . . . , n, it easily follows that a � b�⊕b�⊕b�,
for each � = 1, . . . , n. Let

x := 〈ϕi,∞(a)〉 ∈ Cu(A), y� := 〈ϕi,∞(b�)〉 ∈ Cu(A), for � = 1, . . . , n.

Clearly x ≤ 3y� for � = 1, . . . , n. To finish the proof we need to show
x �≤ y1 + y2 + · · · + yn, and then Proposition 2.1 (with m = 3) will yield the
desired result.

Letting a be given as above and b = ⊕n
�=1 b� ∈ (Ai ⊗ K)+, we aim to

show that ϕi,∞(a) �� ϕi,∞(b) in A⊗K. It suffices to prove that

∥∥v∗ϕi,j (b)v − ϕi,j (a)
∥∥ ≥ 1

2
,

for each j > i and v ∈ Aj⊗K. Note that χi,j (b) is a constant, positive, matrix-
valued function, whence q := limn→∞ χi,j (b)1/n ∈ Aj ⊗ K is a constant
projection such that χi,j (b)q = χi,j (b). SettingQ := ψi,j (1)⊕χi,j (b)

1/2, we
have

ϕi,j (b) = ψi,j (b)⊕ χi,j (b) = Q(ψi,j (b)⊕ q)Q. (3)

Now, let j > i be given and suppose for a contradiction, that there exists
v ∈ Aj ⊗ K such that ‖v∗ϕi,j (b)v − ϕi,j (a)‖ < 1/2. Then, setting w :=
Qvψi,j (1Ai ), it follows from (3) that

1

2
>

∥∥v∗Q(ψi,j (b)⊕q)Qv−ϕi,j (a)
∥∥ ≥ ∥∥w∗(ψi,j (b)⊕q)w−ψi,j (a)

∥∥. (4)
This estimate remains valid upon restriction to any closed subset of Xj .

Let ξ denote the vector bundle over K corresponding to b|K . PlugA,X,Xi ,
b,K and ξ into Lemma 3.4 to getKi,j ⊆ Xj and ξj . Note that b|K = (b1|K)⊕
· · ·⊕(bn|K), whence ξ ∼= ρ∗

1 (η)⊕· · ·⊕ρ∗
n(η), and therefore the hypotheses of
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Lemma 3.4 are satisfied. It is easily deduced that q|Ki,j corresponds to a trivial
vector bundle θnr , where 0 ≤ r ≤ M(i, j)−α(i, j), and since a|K ∈ C(K)⊗K
is a constant projection-valued function of rank 2 it follows that ψi,j (a)|Ki,j
corresponds to the trivial vector bundle θ2α(i,j). It therefore follows from (4)
and [32, Lemma 2.1] that there exists a vector bundle ζ of fibre dimension
(n− 2)α(i, j)+ nr and t ∈ N such that

ζ ⊕ θ2α(i,j)+t ∼= ξj ⊕ θnr+t .

Applying the Chern class to both sides of the above expression, we obtain
that c(ζ ) = c(ξj ). In particular, cnN(i,j)(ζ ) = cnN(i,j)(ξj ), whence Lemma 3.4
implies that cnN(i,j)(ζ ) is non-zero. Hence rank(ζ ) ≥ nN(i, j), and therefore

nN(i, j) ≤ (n− 2)α(i, j)+ nr

≤ (n− 2)α(i, j)+ n(M(i, j)− α(i, j))

≤ nM(i, j)− 2N(i, j).

Thus, dividing both sides by nM(i, j) we obtain

N(i, j)

M(i, j)
≤ 1 − 2

n
· N(i, j)
M(i, j)

.

Hence (2) implies

2n− 1

2n
≤ 1 − 2(2n− 1)

n(2n)
=

(
n− 1

n

)2

<
n− 1

n
,

which is the desired contradiction.

Before considering Villadsen algebras of the second type, let us record the
following proposition, which is an aggregation of results by other authors.
However, it does serve to illustrate the added complexity of Villadsen algebras
of the second type (compare with Theorem 4.2), which are less studied than
those of the first type.

Proposition 3.6. Suppose A is a simple Villadsen algebra which admits a
standard decomposition with seed space a finite dimensional CW -complex of
non-zero dimension. Then A has real rank zero if and only if A has a unique
tracial state. Furthermore, in this case, A⊗ Z ∼= A.

Proof. The proof that real rank zero implies unique tracial state is essen-
tially contained in [34, Proposition 7.1]. Indeed, replacing every instance of
N(i, j) in the cited proof with α(i, j), it follows that if RR(A) = 0, then
limj→∞ α(i,j)

M(i,j)
= 0 for all i ∈ N. It is easy to check that this implies that
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A has a unique tracial state. Furthermore, the statement that A is Z stable
follows from [34, Proposition 7.1] and a series of results summarized in [34,
Theorem 3.4].

On the other hand, assumingA has a unique tracial state, it follows from [23,
Theorem 1.1] that A has slow dimension growth. There is a simpler proof for
V I algebras, which we omit to keep the exposition at a reasonable length.
Therefore, [3, Theorem 2] implies that A has real rank zero.

4. Villadsen algebras of the second type

In this section we studyVilladsen algebras of the second type. We prove that for
each Villadsen algebra A of the second type, F(A) has at least one character.
For the convenience of the reader we recall the construction from [36].

Definition 4.1. LetX, Y be compact Hausdorff spaces. A ∗-homomorph-
ism ϕ:C(X) ⊗ K → C(Y ) ⊗ K is said to be a diagonal map of the second
type if there exists k ∈ N, continuous maps λ1, . . . , λk:Y → X, and mutually
orthogonal projections p1, . . . , pk ∈ C(Y )⊗K such that

ϕ = (idC(Y ) ⊗ α) ◦ (ϕ̃ ⊗ idK),

where α:K ⊗ K → K is some isomorphism and ϕ̃:C(X) → C(Y ) ⊗ K is
given by

ϕ̃(f ) =
k∑
i=1

(f ◦ λi)pi.

In this case, we say ϕ arises from the tuple (λi, pi)ki=1, and the maps λi ,
i = 1, . . . , k, are referred to as the eigenvalue maps of ϕ.

Note that in the above definition we have implicitly used that theC∗-algebra
C(X) ⊗ K has a natural C(X)-module structure. Since all diagonal maps
appearing from this point on will be of the second type defined above, we
simply refer to them as diagonal maps.

For each � ∈ N, let CP � denote the �’th complex projective space, let γ�
be the universal line bundle over CP �, and let D� denote the �-fold Cartesian
product of the unit disc D ⊆ C. It is well-known that the �-fold cup product
e(γ�)

� of the Euler class e(γ�) is non-zero for all � ∈ N. For each integer n ≥ 1,
let σ(n) := n(n!) and σ(0) := 1. Furthermore, let N∞ = N ∪ {∞} and let
κ:N∞ ×N → N be given by

κ(k, n) =
{
kσ(n), if k < ∞,

nσ(n), if k = ∞.
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For all integers k ≥ 1 and n ≥ 0, define compact Hausdorff spaces X(k)n by
X
(k)
0 := Dk and

X(k)n := Dk × CP κ(k,1) × CP κ(k,2) × · · · × CP κ(k,n),

when n ≥ 1. Also, for k = ∞, we set X(k)0 := D and

X(k)n := Dnσ(n)
2 × CP κ(k,1) × CP κ(k,2) × · · · × CP κ(k,n).

Thus X(k)n = X
(k)
n−1 × CP kσ(n), whenever k < ∞ and n ≥ 1, and

X
(∞)
1 := X

(∞)
0 × CP 1,

X(∞)
n := Dnσ(n)

2−(n−1)σ (n−1)2 ×X
(∞)
n−1 × CPnσ(n), n ≥ 2.

For each k ∈ N∞ and n ∈ N, let

π1
k,n:X

(k)
n → X

(k)
n−1, π2

k,n:X
(k)
n → CP κ(k,n),

denote the coordinate projections, and set ζ (k)n := π2∗
k,n(γκ(k,n)). If y0 ∈ X(k)n is a

point, we also let y0 denote the constant map f :X(k)n+1 → X(k)n with f (x) = y0

for all x ∈ X(k)n+1.

For each k ∈ N∞ and integer n ≥ 0, let ϕ̃(k)n :C(X(k)n )⊗K → C(X
(k)
n+1)⊗K

be the diagonal map arising from the tuple (π1
k,n+1, θ1)∪(y(k)n,j , ζ (k)n+1)

n+1
j=1 , where

the points {y(k)n,j }n+1
j=1 ⊆ X(k)n are chosen such that the resulting C∗-algebra

is simple (see [36] for more details) and θ1 denotes the trivial line bundle.
Let p(k)0 ∈ C(X

(k)
0 ) ⊗ K denote a constant projection of rank 1 and p(k)n :=

ϕ̃
(k)
n,0(p

(k)
0 ). Furthermore, let

A(k)n := p(k)n
(
C(X(k)n )⊗K

)
p(k)n ,

and ϕ(k)n := ϕ̃(k)n |
A
(k)
n

. Define Vk to be the inductive limit of the system (A(k)n ,

ϕ(k)n ). The following results about the C∗-algebras Vk may be found in [36].

Theorem 4.2 (Villadsen). For each k ∈ N∞, let Vk be defined as above.

(i) The C∗-algebra Vk has a unique tracial state τ , for each k ∈ N∞.

(ii) The stable rank sr(Vk) of Vk is k + 1, when k < ∞, and infinite, when
k = ∞.

(iii) The real rank RR(Vk) of Vk satisfies k ≤ RR(Vk) ≤ k+1, when k < ∞,
and is infinite, when k = ∞.
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It is easy to check that, if η is an arbitrary vector bundle over X(k)i , then(
ϕ
(k)
i

)∗
(η) ∼= π1∗

k,i+1(η)⊕ (i + 1) rank(η)ζ (k)i+1, (5)

where (ϕ(k)i )
∗ denotes the map from (isomorphism classes of) vector bundles

overX(k)i to (isomorphism classes of) vector bundles overX(k)i+1 induced byϕ(k)i .

For each k, n ∈ N let ξ (k)i denote the vector bundle overX(k)i corresponding to
p
(k)
i . Then (5) implies that

ξ
(k)
i

∼= θ1 × σ(1)γκ(k,1) × · · · × σ(i)γκ(k,i).

A brief word on notation: as before, for each i < j and k ∈ N∞, we let
ϕ
(k)
i,j :A(k)i → A

(k)
j and ϕ(k)i,∞:A(k)i → Vk denote the induced maps from the

inductive limit decomposition. We will often omit the superscript (k) in the
following (whenever k is implied by the context).

Proposition 4.3. Let k ∈ N∞ be given. For each n ∈ N there exist projec-
tions en, q

(n)
1 , . . . , q(n)n ∈ Vk ⊗K such that

(i) en � q
(n)
i ⊕ q

(n)
i , for all i = 1, . . . , n,

(ii) en �� q
(n)
1 ⊕ · · · ⊕ q(n)n ,

(iii) τ(q(n)1 ⊕ q
(n)
2 ⊕ · · · ⊕ q(n)n ) → k and τ(en) → 0 as n → ∞.

Proof. We fix an arbitrary k ∈ N∞, and omit k from our notation. For each
� ∈ N and j = 1, . . . , �, let ρ�j :X� = X

(k)
� → CP κ(k,j) denote the coordinate

projection. Note that ρ�� = π2
k,� and ρ�j ◦ π1

k,�+1 = ρ�+1
j , for all � ≥ 1 and

1 ≤ j ≤ �. For each n ∈ N and i = 1, . . . , n, let q(n)i ∈ An ⊗ K denote
the projection corresponding to the vector bundle ηn,i := ρn∗i (κ(k, i) · γκ(k,i))
over Xn, where γκ(k,i) is as defined above, and rn ∈ An ⊗ K denote the
projection corresponding to the trivial line bundle θ1. Let q(n)i := ϕn,∞(q(n)i )
and en := ϕn,∞(rn). We prove that the projections en, q

(n)
1 , . . . , q(n)n have the

properties claimed in the above statement. In the interest of brevity, let

ηn := ηn,1 ⊕ ηn,2 ⊕ · · · ⊕ ηn,n.

It follows from the Künneth formula, and the fact e(γ�)� �= 0 for all � ∈ N,
that the Euler class e(ηn) ∈ H ∗(Xn) is non-zero for each n ∈ N.

(i): It suffices to prove that 2κ(k, i) · γκ(k,i) dominates a trivial line bundle
for each i ∈ N. However, this follows from straightforward dimension con-
siderations. Indeed, since

2 · rank(2κ(k, i) · γκ(k,i))− 1 ≥ 2κ(k, i) = dim(CP κ(k,i)),
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the desired result follows (see for instance [13, Proposition 9.1.1]).
(ii): Note that it follows from (5) that

ϕ∗
� (η�)

∼=
( �⊕
j=1

κ(k, j)·ρ(�+1)∗
j (γκ(k,j))

)
⊕(�+1) rank(η�)·ρ(�+1)∗

�+1 (γκ(k,�+1)).

Since (� + 1) rank(η�) = (� + 1)
∑�

i=1 κ(k, i) ≤ κ(k, � + 1), it follows that
ϕ∗
� (η�) � η�+1. By induction, ϕ∗

�,m(η�) � ηm, for all m ≥ �. Furthermore,
again by (5), we have that θ1 � ϕ∗

�,m(θ1).

Now, assume that en � q
(n)
1 ⊕ · · · ⊕ q(n)n . Since en is compact in Cu(Vk) it

follows from continuity of Cu(−) that there exists some m > n such that

θ1 � ϕ∗
n,m(θ1) � ϕ∗

n,m(ηn) � ηm.

But since the Euler class of the right-hand side is non-zero, this is a contradic-
tion.

(iii): Recall that ξn denotes the vector bundle over Xn corresponding to the
unit pn ∈ An. Since each q(n)i is a projection and ϕi,∞ is unital, we have

τ(q
(n)
1 ⊕ q

(n)
2 ⊕ · · · ⊕ q(n)n ) = rank(ηn)

rank(ξn)
=

∑n
�=1 κ(k, �)∑n
�=0 σ(�)

=
∑n

�=1 κ(k, �)

(n+ 1)!
.

Hence, when k < ∞,

τ(q
(n)
1 ⊕ q

(n)
2 ⊕ · · · ⊕ q(n)n ) =

(
k

∑n
�=0 σ(�)

) − k

(n+ 1)!
= k(n+ 1)! − k

(n+ 1)!
→ k,

while the case k = ∞ follows from the observation that∑n
�=1 �σ(�)

(n+ 1)!
≥ nσ(n)

(n+ 1)!
= n2

(n+ 1)
→ ∞.

Similarly, for arbitrary 1 ≤ k ≤ ∞ we find that τ(en) = 1/(n+ 1)! → 0.

Corollary 4.4. For each 1 ≤ k ≤ ∞, the central sequence algebra F(Vk)
has at least one character.

Proof. This is a straightforward consequence of Proposition 4.3 parts (i)
and (ii) and Proposition 2.1 (with m = 2).

Remark 4.5. An alternative, albeit slightly artificial, statement of the above
corollary is that for each 1 ≤ k ≤ ∞, the k’th Villadsen algebra of the second
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type Vk absorbs Z if and only if F(Vk) has no characters. Indeed, it follows
from [36, Proposition 11] that K0(Vk) is not weakly unperforated for any
1 ≤ k < ∞, and essentially the same proof applies to k = ∞. Hence [11,
Theorem 1] implies that Vk ⊗ Z �∼= Vk for each 1 ≤ k ≤ ∞. As stated in the
above corollary, F(Vk) has at least one character for each 1 ≤ k ≤ ∞, whence
the desired result follows.

Remark 4.6. It was proven in [15] that if A is a unital C∗-algebra with
T (A) �= ∅ and property (SI), then F(A) has a character if and only if
F(A)/(F (A) ∩ J (A)) has a character (see [15] for a definition of J (A)).
It follows from the above corollary that this is no longer true, if the assumption
of property (SI) is removed. Indeed, let 1 ≤ k ≤ ∞ be arbitrary and Nk denote
the weak closure of πτ (Vk) ⊆ B(Hτ ), where πτ denotes the GNS representa-
tion of Vk with respect to the tracial state τ . Since Vk has a unique tracial state,
it is a straightforward consequence of [28, Lemma 2.1] that

F(Vk)/(F (Vk) ∩ J (Vk)) ∼= N ω
k ∩ N ′

k .

Here N ω
k denotes the von Neumann ultrapower of Nk with respect to the tracial

state τ . Since Nk is an injective II1-factor, it follows that Nk
∼= R, where R

denotes the hyperfinite II1-factor. In particular, there exists a unital embedding
R → F(Vk)/(F (Vk) ∩ J (Vk)) whence F(Vk)/(F (Vk) ∩ J (Vk)) does not
have any characters. Hence, the above corollary shows that the assumption of
property (SI) in [15, Proposition 3.19] is indeed necessary.

Proposition 4.3 (iii) allows us to compute the radius of comparison for each
Vk (the radius of comparison was originally defined by Toms in [31], and
an extended definition was given in [4] and shown to agree with the original
definition for all sufficiently finite C∗-algebras, e.g., unital, simple and stably
finite C∗-algebras).

Corollary 4.7. rc(Vk) = k for each 1 ≤ k < ∞.

Proof. Fix 1 ≤ k < ∞. By [33, Corollary 5.2] and [4, Proposition 3.2.4]

rc(Vk) ≤ lim
n→∞

dim(X(k)n )

2 · rank(p(k)n )
= lim

n→∞
k(n+ 1)!

(n+ 1)!
= k.

Fix arbitrary ε > 0. By Proposition 4.3 parts (ii) and (iii) we may choose
projections e, q ∈ Vk⊗K such that τ(e) < ε/2, τ(q) > k−ε/2, while e �� q.
In particular dτ (e)+ (k− ε) = τ(e)+ k− ε < k− ε/2 < dτ (q), while e �� q.
Since ε > 0 was arbitrary, it follows that rc(Vk) ≥ k.
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The proof of the above corollary can easily be modified to show that
rc(V∞) = ∞ (or even that rV∞,∞ = ∞; see [4] for a definition of rV∞,∞),
but as evidenced by Theorem A.1, in this case a stronger statement holds.
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