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A GENERALIZATION OF COURANT’S
NODAL DOMAIN THEOREM

JAAK PEETRE

The object of this paper is to extend Pleijel’s nodal domain theorem
[4] to Riemannian manifolds. The problem of stating sufficient condi-
tions under which our generalization is valid is not considered. How-
ever, as in the case which was treated by Pleijel, it is easy to give ex-
amples of eigenvalue problems to which the theory can be applied.

1. Let .# be a 2-dimensional Riemannian manifold. The Beltrami-
Laplace operator in .# is

0 0
A = ——g"%——.(g%g"" ‘—> P

where g, and ¢’* are the covariant and contravariant components of
the metric tensor in a local coordinate system and g=detg,.

Let 2 be a relatively compact connected domain in .#. Consider the
eigenvalue problem
(1) Au—2Auw =0 in Q,

=0 on ¢f (boundary of 2).

We intend to estimate the number of nodal domains N of the n-th eigen-
funection of (1).

2. In this section we suppose that .# is homeomorphic to a disc in
the Euclidean plane. We shall first prove a slight generalization of an
isoperimetric inequality due to Huber [2] which will be used in the
sequel. The boundaries of the domains under consideration are under-
stood to be sufficiently smooth.

THEOREM 1. Let Q, be the least simply connected domain containing £2.
Suppose that

(@) VysupK* < =,

2
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where K 1s the Gaussian curvature, K*=max (K, 0), and V, is the area of £2,.
Then

1
(3) Szng{l——SK‘de},
2n
2
where S is the length of Q2 and V the area of 2. Equality holds if and only
if K=0and 2 is a circle.

Proor. If Q is simply connected (£2=1,) then (3) is Huber’s result.
If £ is multiply connected then, applying Huber’s theorem to 2,, we
obtain

1
4) S 2 MVo{l - SK+dV},
27tg

S, being the length of 22, Let X be the interior of 2,—2 and put
U=V,—V. Then we have

V,,SK*dV - VSK‘“dV + VSK+dV + USK+dV

Q0 Q z 20

A

V\K*dV + UVsupK* + UVysupK”*
b 2o

vV

A

K*dV + 2UV,supK*.
20

Ve w3 Q)

Hence, by (2) and since U=V,—V,

(5) V{2n—§K*dV} < Vo{zn—SK+dV=.
o %o

Formula (3) now follows from (4), (5) and 8=8,. If equality holds in
(3), then 2 must be simply connected and the last assertion of the theo-
rem follows from Huber’s result.

Next we prove a generalization of a theorem due to Faber [1] and
Krahn [3]. Our method of proof is essentially the original one of Faber
and Krahn.

Ta®mOREM 2. Suppose that (3) is satisfied and let A, be the first eigenvalue
of (1). Then

1
2 — +
(6) AlVgnj{l 2W§K dV},
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where j is the first positive zero of the Bessel function J,. Equality holds if
and only if K=0 and 2 is a circle.

Proor. Let u=u, be the first eigenfunction. Put
Qo) = {& | u(x) > o}, 0<g<maxu
D) = S |gradul2dV

QA

7@ = av,
20
S =\ s,
£9(0)
H(o) = Suw.
Ae)
Then
D)l = ~D'(e) = | lgradulds
£200)
and
V@)l = — V() = | lgradul-as .
£

Now by Schwarz’s inequality

(S(@)* = ID'(@)I1V (o)l
and by theorem 1

{1 - %!S)mdvimwe)/w(e)l

<f1- & (Krav|avnviel s el
Q)

We apply a process of symmetrization replacing the domains £2(p) by
concentric circles .{5(9) with the same areas in the Euclidean plane.
We replace the function « by a function 4 which equals p on ﬂf)(g).
Clearly V(p)= V(o) and V'(p)=V'(g). Hence

l el ey ’
{1 _ E;§K+dV}4nV(g)/IV(e)l < 1D(o)l -
But evidentl - - -
oy 47 V(0)/|V'(e)| = |D'(0)l;
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for (8(e))? = 1D'(0)||V"(e)| and 4z V(g)=|S(g)[2. Hence we obtain
1 + ~ ’
[1- 5 (xrarliver = i
n »
2
Integration over the interval 0 < p <maxu finally yields

1 ~
{1 - ——SK*dV}D <D.
27
2

Moreover I;V(Q)=H(g) and H=H. Now it follows from Rayleigh’s in-
equality that - ~ .
A =D/H, A < D|H;

which proves (6) since il =mj2/V. The conditions for equality follow imme-
diately from theorem 1.

Remark. The above symmetrization process combined with the in-
equality (3) of theorem 1 yields & number of inequalities similar to (6)
and related to variational problems of the type

S lgradu|2dV = min, SF(u)dV = constant

with boundary condition u=constant. Inequalities of this type have
been studied in various cases (Euclidean plane, surface of a sphere,
etc.) by Pélya and Szegé [5].

We are now in a position to obtain the desired extension of Pleijel’s
theorem. Let 1, be the n-th eigenvalue and u,, the n-th eigenfunction.
Let Q,, ..., 24 be the nodal domains of u, (for a definition of nodal
domain see [4]). For each 2, the value 1, is the lowest eigenvalue.
Applying theorem 2 to each (2, we obtain

A nj2{1 - El{z SK*dV} .
Q
Summation of these inequalities gives

1
ALV njz{N S SK+dV}.
27
2
From the well-known fact that lim»n—14, V =4x it follows that

(7 limsupN/n £ (2fj)2 < 1.

Thus we have proved
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THEOREM 3. There is a number x <1 such that

(8) lim supN/n £ o.

Remark. It follows from Rayleigh’s inequality that (7) and (8)
remain true if (1) is replaced by the somewhat more general eigenvalue
equation

Au + c(x)u = Au,
where c(x) denotes a sufficiently well-behaved bounded function. In
fact, it is clear from the proof of theorem 2 that

1
(4 — infc(x))V 2 ajz{ 1 - — SKWIV}
27
2
from which formula (7) can be deduced.

3. In special cases it is possible to get better results, e.g. we can drop
the restriction (2). Consider the case K = constant throughout .#. Then

it is known that .
8 2 471:V(1 - —KV) ,
4n

where equality holds if and only if 2 is a (geodesic) circle. This inequality
yields .
AV 2 m? (1 _ K+ V)
47

and
lim supN/n £ (2[)2.

Moreover we may deduce:
Among all domains with the same area the (geodesic) circle minimaizes A,.

It is also possible to extend the results of section 2 to k-dimensional
Riemannian manifolds of constant curvature. The general case of a
Riemannian manifold of arbitrary dimension remains open, however,
for we do not know any %-dimensional analogue of Huber’s theorem.
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