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NOTE ON GROUPS WITH AND WITHOUT
FULL BANACH MEAN VALUE

ERLING FOLNER

In this note I shall prove two theorems. Theorem 1 is a simple con-
sequence of the Main Theorem in [4, p. 245]. It shows that there exists
an upper mean value in any group with a full Banach mean value (see
[4, p. 243]), which is quite analogous to the usual upper mean value in
abelian groups and has similar properties. As to Theorem 2, let me
remark that a group & has a full Banach mean value except when there
exists a function H(x) which is =1 for all x and has the form

(0) H(z) = hy(@) = hy(@ay) + . . . + 7y () —hy(2ay) ,

where k,, ..., h, are bounded functions on G and q, ..., a, elements
from @; see [2, Theorem 4, p. 14]. Theorem 2 contains a surprisingly
stronger result.

Professor B. Sz.-Nagy has kindly called my attention to some over-
lapping between my papers [2] and [4] and an earlier paper by J. Dix-
mier [1]; in particular Theorem 4 of [2, p. 14] (with L the space of all
bounded functions) and part of the sufficiency statement in the Main
Theorem of [4, p. 245] are contained in Dixmier’s paper.

For every bounded function f(x) on a group @ with full Banach mean
value we put — .
Mof = ll’].fﬂ sup, Z“nf(xa’n) ’
where the infimum is to be taken over all [ ={xy, ..., ay; @y, ..., ay},
0, >0, Zoy,=1, a,eq.

THEOREM 1. In a group G with full Banach mean value, the expression
M, f has the properties

(1) Mf < sup, f(z),

(2) My {}f} = AM,f, 4z20,
(3) go{f"ﬂ‘/} < M f+Myg,
@ Mo {f@)—f(a)} = 0.
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Every right-tnvariant Banach mean value Mf on the space of all bounded
Junctions on G [2, p. 14] saiisfies

(5) —My(—f) < Mf < M,f,
and for any fixed f the Banach mean value Mf can be chosen arbitrarily in

the interval (5).

Proor. If Mfis a right-invariant Banach mean value, we have

and hence Mf<M,f. The other part of (5) follows by replacing f by
—f in the inequality just obtained. The existence of a right-invariant
Banach mean value Mf on the space of all bounded functions on @,
which for an arbitrary fixed f can be chosen arbitrarily in the interval
(5), is a consequence of (1), (2), (3), (4), and the theorem of Banach
stated in [3].

In order to prove (1), (2), (3), (4) we consider

Mf = infy sup, (f(x)+H(x)),

where the infimum is taken over all H of the form (0). It is finite and
has all the properties stated for M,f in (1), (2), (3), (4); see [2, pp. 14-15].
We shall prove that 3, f= Mj. Since the function

Zo‘nf(wan) = f(.’.b') + ZOC" (f(xa’n) _f(x))

has the form f(x) + H(z), it follows from the definitions of M,f and Mf
that Mf<M,f.
In order to prove that M,f< Mf, let

H(z) = hy(@)—hy(za) + . .. +hy(@) = hy(2a,)

be chosen such that f(x)+ H(x) < Mf+e. By means of the Main Theorem
in [4, p. 245], we can find, to every 5 >0, a finite set £ of elements from

G such that .
N(EnEa) > (1—-9)N(H), i=1,...,n,

where N(.) denotes the number of elements in the set between the
brackets. Then

Mf+ez N(E)? ZE’ (f(za) + H(za))
= N 3 flaa) + 2 NEY* 3 (hlao)~hifwaay)

2 N(EY" 3 (o) - 2n§':supz b)) -



NOTE ON GROUPS WITH AND WITHOUT FULL BANACH MEAN VALUE 7

Choosing # sufficiently small we get

NE)1 Y f(xa) < Mf+2¢,
ack

and the inequality M,f< Mf follows. This completes the proof of Theo-
rem 1.

ReMarRk. Theorem 1 remains valid when the word ‘right-invariant”
is replaced by “bi-invariant”, M,f by
E&f = inf sup; Zo‘nf(bnxan) ’
and (4) by 77, {f (x) —f (bwa)} = 0.

This may be proved in a similar way as Theorem 1.

TEEOREM 2. In a group G without full Banach mean value every bounded
Junction can be wuniformly approximated by functions of the form (0).

More gemerally: If L is a right-translation tnvariant linear space of
bounded functions on @ which is closed with respect to the formation of
maximum and minimum between two functions, contains the comstants,
and has no right-invariant Banach mean value, then every function from L
can be uniformly approximated by functions

H(z) = hy(x)—hy(zay) + . .. +h,(x) = hy(2a,) ,

where the B’s belong to L.

Proor. For a function f from L we put
(6) Mf = inf* sup, (f(z)+ H(x)),

where the infimum is to be taken over all funetions H of the form (0)
with A’s belonging to L and such that f(z) + H(x)20. We remark that
since L has no right-invariant Banach mean value, there exists an H(x)
of the form (0) with %’s from L such that inf Hy(x)=1 (see [2, p. 14]),
and consequently the function

H(x) = |inf, f(x)| Ho(z)
has the form (0) with #’s in L and satisfies

inf, (f(z)+ H(®) 2 inf, f(2) + inf, H(z)
= inf, f(2) + linf, f(@)| 2 0.

Thus the set of H’s over which the infimum in (6) is to be taken, is not
empty. Further we obtain the inequality
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0 < Jf < sup, f(2) + linf, [(@)] sup,Ho(x)
so that
(7) 0= Mf <Csup,|f(xr)] with C =1+ supHyx) (= 2).
We first show that
(8) M(f+g) < Mf+Myg .
Let >0 be given. We choose H,(x) and Hy(z) of the form (0) with A’s
in L such that
0 < f(x)+Hy@®) < Mf+e and 0 < g(z)+H,y(x) < Mg+e.

Then —
0 = f(x)+9g(x)+ Hy(x) + Hy(z) £ Mf+Mg+2¢.

Since H,+ H, is an H with A’s in L, we get
M(f+g) < Mf+Mg+2e,

and (8) follows.
Next we show that

(9) H{f@a)} = M{f@)}.
We have
M {f(z)} = inf* sup, (f(2) +H(x))
= inf* sup, (f(za) + {f(x)—f(xa)+ H(x)})
=M {f(za)},
where the infimum is to be taken over all H’s of the form (0) with A’s
in L and f(z)+ H(z)=0.
Next we show that
(10) M{3f@)} = AM{f@)}, 4
In the case A=0 we get
M{0f} = inf* sup, H(z) = 0 = 0Jf,

0.

v

where the infimum is to be taken over all H’s of the form (0) with A’s
in L and H(x)= 0. We have used that H(z)=0 is admitted. In the case
A>0 we have -
M{if} = inf* sup, (Af(x)+AH(x)),
where we consider H’s with »’s in L and Af(x)+AH(x) = 0. Thus (10) is
clear also in this case.
Next we show that

(1) T {f@)—f@a)} = 0.
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On the one hand, from (8) and (9) we get
M{f(x)~f(za)} 2 Mf(x) — Mf(xa) =0,
on the other hand, from (6) we get
M{f(x)—f(za)} < sup, {f(z)—f(@a)+f(za)—f(z)} = O
since 0=0. Hence (11) follows.

We want to show that Mf=0 for all f in L. We assume, to the con-
trary, that there exists an f, in L with Mf,+0 (incidentally Mf,>0
on account of (7)). By (8), (10), and the theorem of Banach stated in
[3] we can determine a linear functional Mf on L with Mf< Mf for all f
in L and Mfy=Mf,>0. It follows from (11) that Mf is right-invariant.
In a well-known manner we proceed as follows in order to write Mf as
the difference between two positive linear functionals M*f and — M f.

For functions f=0 in L we put

M*f = sup Myg.

0sg=f,
geL

From M0=0 and (7) applied to g we obtain the estimate
0 < M*f < Csup,f(z).

Further M*{Af}=AM"f when 120, and M*{f(xa)}=M"*{f(x)}. For func-
tions f=0 and g=0 in L it is clear that

M (f+g) 2 M'f+M*g.

In order to prove the converse inequality, let Abein L andlet 0<% < f+g.
It suffices to show that 2 =f,+g, where f, and ¢, are in L and satisfy
the inequalities 0<f,<f and 0<g,<g¢. Clearly, fi=min(h,f) and
g1="h —f, have the desired properties.

Every function f in L can be written f=f, —f, with non-negative f;
and f, in L, in particular f=f*—f", where

f+=max(f, 0), _"f— = min(f) 0).
The equation
M+f = M+f1_M+f2
defines M"f in a unique manner, and for arbitrary f and ¢ in L we get
MG} = AU

(where 1 is arbitrary), M*(f+¢)=M"f+M"g, and M*{f(xa)}=M"{f(x)}.
Further
M'f = M =M 5 MY < Coup, ().
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This estimate, however, is not sufficient for our purpose. Using that
the constants belong to L we get instead

M*f < M*(sup,f(@)) = M*(1) sup, f(z) .
For functions f= 0 in L we put

M f=inf My.
osg<f,
geL

It follows from (7) that
Mgz —M(-g) 2 —Csup,|—g()| 2 —C sup, f(z)
so that
02 Mfz —Csup,f(x).

Continuing as above we define M~ f for all f in L and show that — M~ f
has the same properties as those listed for M *f.
We shall prove that

(12) Mf=Mf+Mf.

It suffices to do it for functions f=0in L. Let ¢>0 be given. We choose
g in L such that 0<g<f and

Mg > M*f—¢.
Then 0= f—g=<f so that M(f—g)= M f. Hence
Mf> MTf+ M f — ¢.

Analogously we get
gotsly we 8 Mf < Mf+M f+e.
Thus (12) is proved.

Since M fy+ M fo=Mf,>0, either M*f, or M f, is +0. Assume,

for instance, that M*f,<0. Then M"140 (and hence >0) on account
of the inequality
M*( —fo) £ M*(1) Sllpx(~—f0(x)) s

and M*f/M™*1 is a right-invariant Banach mean value on L. Thus we
have arrived at a contradiction.

We have shown that Mf=0 for all f in L. Thus to every ¢>0 there
exists an H with A’s in L such that

ez f(x)+Hx) =z 0.

In other words: f(z) can be uniformly approximated by functions H(x)
with &’s in L. This completes the proof of Theorem 2.

Remark. Theorem 2 remains valid when ‘right-’ is replaced by
“bi-” and
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kl(x) —‘hl(xafl) +... +kn(x) —hn(xa,n)

b
v hy(@) — hy(boway) + . . . +hy (@) — b, (b2a,) .

This may be proved in a similar way as Theorem 2.
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