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ON SPECTRAL ANALYSIS IN THE NARROW TOPOLOGY

Y. DOMAR

The following concept of closure was introduced by A. Beurling in [1]:

Let D be a class of bounded continuous complex-valued functions on
(— o0, ). We say that a function y(x) is included in the narrow closure
of D if, for every £>0 and every compact interval (—a, a), there exists
a function gy(x)eD such that

max |p(zo) —@o(@a)l + |l ligoll| < &,

—<asr=sa

where |.|| denotes the uniform norm, i.e.

gl = sup o).

—00< ¥ <00

Using the theory of analytic functions Beurling then proved the fol-
lowing theorem:

TrEOREM 1. If the bounded and wuniformly continuous function ¢(x) is
= 0, then there is at least one function e¥* (with real ) included in the narrow
closure of the class of all linear combinations of translates

n
2 Gy(p(l'-f-ﬁfv) -
1

(Here ¢, denote arbitrary complex numbers and z, arbitrary real num-
bers.)

We shall here give an alternative proof of Beurling’s theorem, only
using pure Fourier analysis arguments. As for the methods employed,
one advantage connected with this limitation is that the proof can be
easily carried over to the case where the real line is replaced by an
arbitrary Abelian locally compact group. That the theorem is true even
in that case was obtained from a more general theory in [2]. The proof
in this paper is, however, more direct and does not use the theory of
normed rings.

Since the function p(z) in the theorem was assumed to be uniformly
continuous, any function of the form
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(o]

v *f =\ o=z Sz,

—00

where fe L, can be approximated uniformly arbitrarily closely by func-

tions
n

2ep+a,).

1

Hence Theorem 1 is a corollary of the following theorem:

THEOREM 2. If the bounded Lebesgue measurable function ¢(x) is == 0,
then there is at least one function e included in the narrow closure of the
class of functions @xf, where fe L,

We shall prove Theorem 2, and for that purpose we need a simple
lemma.

LEMMA. Given >0, there exists a function
o0 [o )
h(B) = 3 c,eim,  where Dl <€,
—0 —00

such that, for some 6> 0,
() = 1—e® if |1—e® < 8. (0 1isreal.)

Proor or THE LEMMA. We may of course assume that ¢ < 5, hence that
b=--ne? < }n. Let us then choose
1—ef if |60,
1—-et@-9 §if ph <0 < 2b,
1-¢i=2-0 jf —2b <0< —b,
0 if 26 10| =2w=m.

h(9) =

Then, using the Cauchy inequality, we obtain

Sl < [Jarmer 3a +n2)lcn|2r

L—00

4

< | (5/2) S
A,

3

(5/2n) S 22+ 12)d6}
—2b

[(5/27)-4b-5]F = ¢.

3
(lk(9)|2+lh'(9)l2)d0}

IIA
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Proor or THEOREM 2. We denote by A, the set of real numbers 1
with the following property:

For every open interval on —oco<f< oo, containing 4, there exists a
function feL! with the Fourier transform

fo =\ ef@yds

—o0

vanishing outside the interval, and such that ¢*f == 0.

We shall prove that this set is not empty. If it were empty, then we
could cover — oo <t< oo with open intervals I, such that ¢*f=0 for any
feL* with f vanishing outside one of these intervals. And any compact
interval C on — o <# < oo could hence be covered by a finite number of
these intervals, say {,}}. It is wellknown that any function fe L' with

f vanishing outside C can be decomposed into a sum

n

=27,

1

where for every », f,e L' and f, vanishes outside I, (cf. the proof of lemma
6,5 p- 91 in Wiener [3]). But since for every »

p*f,=0,
we thus obtain p*f=0.

This would then be true for every felL!' with f vanishing outside a
compact interval. This subclass of L! is, however, dense in L! (cf. lemma
6y, p. 82 in Wiener [3]) and hence p*f=0 for every fel!, and this is
impossible if ¢ == 0. Therefore A, is not empty.

Let us now choose an arbitrary ic A, We shall show that ¢%* is in-
cluded in the narrow closure of the functions g*f, where fe L', and this
will then prove the theorem.

For that purpose let us choose an arbitrary ¢>0 and an arbitrary
compact interval (—a, a). The subset £ of —oco << oo where

[1—eit-Dz| < §

for all xze(—a, a), d being a number which fulfills the condition in the
lemma with respect to the given ¢, is a set which contains 4 as an interior
point. Hence there exists a function fe L' with ¢,=¢@*f == 0 and with

f vanishing outside E. There is no real restriction in assuming that

#(0) =1 and 1= lgoll = 1+¢,
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for otherwise we can make these conditions fulfilled by a suitable trans-
lation of f and a multiplication of f with a proper constant. Then we
have if 2 e(—a, a)

|®o(0) Wto—%(%)l

< lpo (@) €470 — o (2 + o) |
= |lp(@) * [f(@)e?™ —f(z+z,)]|l -
g@@) = f(x)e™™ — f(x+x,)

has the Fourier transform

qu,m, —@o(%o)| =

But the function

§(t) = fit)ye™o—fe)et= = flt)eo[1 —t-Pmn]
and since f(t) vanishes outside the set where

[1—eDm| < ¢,
the lemma gives us
— f(t) ei}xo 2007 Cn ez'n(t—l)xo
—00
A - 0 . .
— f(t) ezl:co 2 cn e—mm emtxo .

—o0

Hence 0
gx) = €' X' o, (z+may)

which yields

|50 — g ()] <

|

o) [e““ X cpeimeof(a nxo)]

—0

(o)
= ” 2 €y €70 g (2 + i)
=

IIA

3 el lgo(@)]

e(l+e).

IIA

This is true for all z,e(—a, a). Hence

max [e%%— gy (zg)] + |~ llggll| < (1 +e)+e,
—asr=a
and since ¢ and (—a, a) were arbitrary this implies that e is included
in the narrow closure of the class of elements g*f.
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