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RANDOM SEQUENCES
AND ADDITIVE NUMBER THEORY

LENNART CARLESON

1. The fundamental problem in additive number theory is to decide
if a given sequence of positive integers {a,}; constitutes a basis, i.e. if
every positive integer n can be represented in the form

n = ‘TZ &, Eefao,

with p independent of n. In the vast literature on this subject, there
seems to be no investigation concerning the ‘average’ behaviour of a
sequence {a,};’ in this respect. For example, if a,=v-pF, where p, is
the vth prime and a,=1, is it ‘likely’ or ‘unlikely’ that {a,}3’ is a basis?
The object of this note is to prove a result which makes it possible to
answer a question of this type. It should be stressed that the randomiza-
tion of the problem makes the proof comparatively easy and that the
classical tools of analytic number theory are quite sufficient for our
purpose. Our result can, no doubt, also be proved quite elementary.

2. Let {,})7" be a given sequence of positive integers such that logi,
is an increasing convex function of logn. We now consider the set of all
sequences {,}; such that

(1) to=1, 0<t, <A, v=12 ...
With the sequence {t,};° we associate the real number

o) t”
t=—"—,
2111200011’

1
so that 0<¢<1 and Lebesgue measure on this interval is interpreted as
probability of the corresponding set of sequences [1]. The theorem to
be proved is the following:

THEOREM. Under the conditions stated above, a sequence {8}y, satisfying
conditions (1), ts a basis with probability 1 <f
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logi,

2) lim
oo logm

If (2) does not hold, the above mentioned probability is zero.

< o©

The last part of the theorem is easily proved. —Suppose that n¥/1, — 0
for every k. Then n*[t, — 0 with probability 1, since the probability of
the inequality t,<n* is n*/4, and the series 2'7°n%*1,~1 converges. If
now n*t, -0, choose m so that ¢,>¢, for n>m. The number of
integers =<t, which can be represented by a sum of p numbers ¢, is
< (m+1)? <t, for m sufficiently large. Hence {t,};” is no basis, which
was to be proved.

3. We now turn to the direct part of the theorem. We first observe
that we may assume 1, =nk. Namely, if a is the limit (2), choose k > 2a.
For every =, define m by the inequality

k
Ay < 0 = Appiq -

Since log4, is a convex function of logn and since m >n? for n sufficiently
large, it follows that

nk— 2., -

< Const.
” mn¥

1
< Const. — .
nZ

The series X' (1—4,,/n*) being convergent, a sequence {t,};° chosen at
random under the conditions 0 <¢, < n¥, with probability 1 also satisfies
the inequalities 0=t¢, <4, for n sufficiently large. But, assuming the
theorem proved for the sequence {n*}, {t,}5 is also a basis with proba-
bility 1. A fortiori, the theorem then holds for the sequence {4,}; we
need only use the subsequence of 1,,’s defined above.
In the following we shall use the notation 1, =n* and « =1/k. We set

(3) 8,(051) = 8,(0) = 3 €™, —a<0zn,

tys=n
and choose a positive integer p >k and define

1 kg

T,0) = o | lsa()ias .

2
The above definitions have a sense for almost every ¢ and the following
lemma holds.

LeMma. If 1
(4) m, = STn(t)dt

0
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and 1
(5) 0,2 = S (T, (t)—m,,)? di

0

are the meanvalue and standard deviation of T',(t), then

(6) m,, = O(n®s-1)
and
(7) 0, = O(m*P174%)

Proor. Define the function y,(0) by the relation

1
1
® a0 = 5 O
7T
0
> 1 .
=3 {0ttt )

i, S0

Let us first consider the terms where all «; are unequal. For such a term
the integral is easily evaluated and its value i
P b1 1

O—1 2"

v=1 oy

U, = min (4, ,n+1).

The sum of all these terms is thus majorized by

o ($5)

Let us now consider the terms for which, for example, &, =«, ; while
the other «;’s are unequal and +«,. In the same way as before, we find
that the corresponding sum is less than

Const. m;-;(g’i)2p~ (n +n ) )

}.,,>n

Const.

which, by Hoélder’s inequality, is dominated by

(9) Const. {|9|2” 5 —1—) +n”"‘} .

It is easy to see that the sum of the terms corresponding to the remaining
cases all have the same majorant (9). We get a better estimate if we
observe that for every positive integer A

Math, Scand. 4. 20
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s, (0)2 = Const.{th +

2 eit,, (]

2p }
This yields

. 1 | 2p
1,(0) < Const. {h P 4 o <v=h Z}) + n? } .

If we choose % in the most favourable way, %~ |6|~*, we obtain
(10) y)n(e) é Const'. {'6"21"" + nlhx} .

A trivial upper bound of y,(0) is Const. n2P* obtained by replacing e**
by 1 in the definition of s,(6). Using this estimate in (—d, ) and (10)
for |6]| >0, we find

m, = Srpn(G)dO < Const. {n?*¢ 4 §=2p*+1  pra}

Here we choose d=n"1 and obtain (6) since 2px—1> po.
For the proof of (7), which proceeds along the same lines as above,
we introduce the function %(x), defined by

(@) = I, =0
mE) = 0, 2=+0.

T, can be written as a sum of statistical variables
Ty = YtayFag+ oo o —lay)
for a suitable numbering of z;. If 7; has meanvalue u;=M,(7;), then
0,* = % {M (7)) — pius} -

Here M, indicates that we take the meanvalue under the conditions
t, <n. In this sum, all terms (¢, §) disappear with the exception for those
for which 7; and 7; have one or more ¢, in common. The estimation
above then easily shows that the sum of M, (7;7;) over those pairs (i, j)

is less than
O(n'P*—22)

4. The proof of our theorem is now completed by well-known arguments
(seee.g.[2]). Let f(z;¢t) be the function defined formally by, z=re®, r <1,

flest) = ‘(fz‘v - (l—r)gwsn(e)r"



RANDOM SEQUENCES AND ADDITIVE NUMBER THEORY 307

and set

fes o = 5 a(t)2 .

We have the following set of relations:
i 2p o0 2 .

(11) (2 ’%) = fOr® )P = (Z a,(t) 7‘2") < (29'2") (2 lavl2r2”) .
0 5 <

ay+0

To get an estimate of the last factor we observe that

Fes )% < (1—r)2 (f sa 0)17) ” < Const. (1=1) 3 [s,(0)%r»
0 0
and find

(12) f |a,|2r2e = iS f(z; )20 < Const. (1—7) 3" 7T, (z) .
0 27’_” 0

Whenever the last series converges, all estimates (11) and (12) are le-
gitimate. Let K >0 be a (large) constant and choose ¢ so that

on

(13) R,(@) = X' T,@) = K2%°", n=12,...
0

Since

1
¢ = | Ba0dt = 0227 m)
0

and

‘ 3
{ S (Rn(t) - Qn)z dt } = O(zzpan—§an) ,
0

the measure of the set where |R,(t)—op,|>A2%*" is < A710(27").
Hence (13) holds except on a set whose measure tends to zero as K — oo,
Now if (13) holds, a partial summation shows that the right hand side
of (12) is O((1—r)*?P*). If we combine this with the fact that the left
hand side of (11) is > const.(1—7)"2* we find that

(1-r) 3 r® > const. >0, 7r—>1,
ay+0
and this is equivalent to the fact that the set of integers representable
by p numbers ¢, has positive density. Our theorem now follows from
the famous Schnirelmann density theorem [2, p. 4].

20*
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