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ON THE IRREDUCIBILITY OF CERTAIN TRINOMIALS

ERNST S. SELMER

1. Through a study of generalized continued fractions, I have been
led to certain questions concerning the irreducibility of polynomials.
Let us first consider the general problem:

The ordinary algorithm for a continued fraction may be described as
a systematic replacement of two non-negative numbers, «,” and
a,” £a,, by two other numbers, usually a,"+D =ga,” and @,V =
the (positive) remainder by the division a,/a,". Formulated in this way,
a generalization to n dimensions is immediate. Such a division algorithm
has been extensively studied by Perron [7]. An alternative procedure,
using subtraction instead of division, was introduced by Brun [1]: At
each step, with the » numbers

(1.1) M 2a®™ 2z ... 20a," 20,

we replace a,") by the difference @, —a,, and rearrange the numbers
according to magnitude.

Of particular interest are periodic expansions, characterized by
a, 1+ q,r+9) a,r+9

= = ... = =2..

1.2
( ) a 1(7') a 2( L)) an(')

In any procedure for generalized continued fractions, the ratio 1 is
determined by an equation of degree n, and this equation is irreducible
if and only if the given n numbers are linearly independent. Irreducibility
and independence are then, of course, related to the same basic field of
rationality. In what follows, we shall always assume this to be the
ordinary field of rational numbers.

The simplest periods consist of one step only, that iss=1in (1.2). In
Brun’s algorithm, we must then have @, —a,® =q,"+D, since other-
wise the smallest number would not be involved at all in the process.
The equations (1.2) then take the form

a,z(") aa(") _ an(f) _ a 1(7) _az(r) _

a® a® a0 q® ’
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showing that 4 is a characteristic root of the » x » matrix

0 1 0 0...0
0 0 1 0...0
0 0 0 1...0

l 0 0 0 0...1 l
1 -1 0 0...0
The corresponding equation for 4 takes the form

(1.3) m+i-1=0.

For several reasons, I have found it natural to replace the difference
@, —a,” in Brun’s algorithm by a,”—a,", that is to form the largest
possible difference between any two of the numbers (1.1). For a period
of one step only, the equation (1.3) is then replaced by

(1.4) g in1-1 =0,
or with 2=1/u:

ur—u—1=0.
In general, I have been led to study the irreducibility of the polynomials
x+x+1.

By changing the sign of x appropriately, we can always get one of the

t:vc;)forms f@) = ar—z—1
(1. fo@) = " +x+1.

2. Before studying the irreducibility of these polynomials, we may
mention an interesting property: For n=2, the equations (1.3) and (1.4)
both give the polynomial

(2.1) A24+4-1,

corresponding to an ordinary continued fraction with all partial de-
nominators =1. It is well known that (2.1) is the quadratic polynomial
with the smallest possible positive discriminant, D=5.

In general, the polynomials (1.5) have very small discriminants. 1 have
obtained the expressions

D(fy(®) = (=1 D@D [" 4 (~1)" (n—1)""]
D(fy(@)) = (=D [0+ (=) (e -1)*7] .
For the first values of n, this yields:
n=2: D(f)=+5 Dy = -3,
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representing the smallest possible quadratic discriminants of both signs.
n=3: D(fy) = —23, D(fy = —31,

which are the two smallest negative discriminants in the cubic case.
n=4: D(f) = —283, D(f,) = +229.

According to Delone and Faddeev [2], there exists one negative
quartic discriminant with a smaller absolute value than D(f,), namely
D= —275. In the case of totally complex quartic fields, many discrimi-
nants smaller than D(f,) are known (the smallest one being D=117).
However, the fields listed by Delone and Faddeev all have a quadratic
subfield. Dr. H. J. Godwin has computed the small totally complex
quartic fields, whether or not subfields exist. He has kindly informed
me that D(f,)=229 is really the least discriminant in the latter case.
His results are submitted for publication to the Proc. Cambridge Phil.
Soc.
n = 5: D(f;) = 2869,

while f,(x) is reducible (cf. (3.1) below). The minimal discriminants of
quintic fields have been calculated by Hunter [4]. In the case of 4 com-
plex roots, the minimum is D= 1609, and there are at least 6 more fields
with a smaller discriminant than D(f,).

For n =6, no results on minimal discriminants are available.—I owe
all references to such discriminants to Dr. J. W. S. Cassels.

3. For large n, all zeros of the polynomials (1.5) will clearly have a
modulus close to 1. As we shall see later (cf. fig. 1, p. 292), a modulus
=1 can occur only for x=e**%3 corresponding to a rational factor
x2+x+ 1. It is easily seen that this is possible only for f,(z), in the case
n=2 (mod 3). The first such factorizations are given by
(3.1) B+e+l = (B+a+1)(2®—a2+1)

B+r+l = (@+e+1)(@b—a®+a®—x2+1).
The general form of the second factor is clear.
The main purpose of the present paper is to prove the following

THEOREM 1. The polynomials
filz) = a"—z—1
are irreducible for all n. The polynomials

fol@) = a®+x+1

Math. Scand. 4. 19
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are trreducible for n== 2 (mod 3), but have a factor x2+x + 1 for n=2 (mod 3).
In the latter case, the second factor of fo(x) ts trreducible.

This result does not seem to follow from any of the existing irre-
ducibility criteria. The Eisenstein-Schonemann theorem and its generali-
zations (cf. Ore [6]) clearly fail. However, by studying reducibility
modulo a prime p, Serret [11] and Ore [6] have shown that the polynomial

2P —x+a

is trreductble when p is a prime such that p + a. This result contains as
a special case the irreducibility of my polynomials f,(x) when = is a prime.
However, similar methods seem to fail for composite degrees.

Criteria by primality of certain values of the function are clearly in-
sufficient in the case of arbitrary degree (but see Section 7 below).

Other general criteria, which also fail in my case, are listed in the
expository article by Dorwart [3], and in Part 8, problems 116-129, of
Pélya and Szegs [10].

An important criterion, typical of one approach to the problem, is
given by Perron [8]: The polynomial (with integer coefficients)

"+ a1+ a, 2"+ ... ta, +a,

is irreducible if
lag] > L+|ag| +|as[+ ... +]ay] .

Applied to f(x)=a" +ax + 1, where we substitute = 1/z, this shows that
f(z) is irreducible for |@|=3. When |a|=2 and f(+1)+0, we can still
conclude irreducibility according to Perron. When |a|=2 and f(x) has
a rational factor # + 1 or x — 1, the second factor of f(x) will be irreducible
(this is not contained among Perron’s statements, but follows easily
from his method). To sum up, we have the following

THEOREM 2 (Perron). The polynomial
fl@) = am+ax+l

18 irreductble for |a|23. When |a|=2, f(x) is either irreducible or has a
Jactor x £ 1. In the latter case, the second factor of f(x) ts irreducible.

Combined with my Theorem 1, this settles the problem of irreducibility

of the polynomials f(@) = 2" +ax+1

for all (integer) values of a.
The only criterion for irreducibility of a trinomial

glx) = ™ +qxP +7, l1=sp=n-1,
is given by Nagell [5]: g(x) is irreducible if
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1° gl > 14|t

2° If Ajn, k> 1, then |r| is not a A*™™ power. In particular, we must
have |r] > 1.

Nagell remarks that his result is clearly weaker than the above
criterion of Perron in the case p=n—1. It could also be noted that
Nagell’s first condition coincides with Perron’s criterion for p=1 (im-
mediately seen if x is replaced by r/z). In this case, Nagell’s second con-
dition is consequently redundant. However, his first condition fails for
my polynomials (1.5).

In a series of papers from 1935 to 1937, Petterson has discussed and
extended many of the general irreducibility criteria. All results are also
contained in his thesis [9], where in particular (pp. 95-96) the con-
ditions are applied to the polynomial

am+EM(x)x+a (¢ + 0).
To get the types (1.5), we must put ZM (x)=a= + 1, in which case it is

easily seen that Petterson’s criteria all fail.

4. To prove Theorem 1, we must study the distribution in the complex
plane of the roots of the equations

(4.1) T (x4+1) = 0.
It will turn out that this distribution is very regular.
Substituting in (4.1)
x = re? = r(cose+4sing) ,
and separating the real and imaginary parts, we find
(4.2) rtcosng = + (rcosp+1), r*sinng = +rsing,
or, by taking the sum of the squares on both sides:

rin—y2 1

4.3 =
(4.3) cosg o

This may be considered as the equation, in polar coordinates (r, ¢), of
a curve in the complex plane, containing all the roots of (4.1). A typical
curve, for n=>5, is drawn in fig. 1. When 0 < ¢ <=, r is a decreasing func-
tion of ¢ for increasing . The extreme values of r, for p=0 and ¢=m,
are denoted by R, and r,, respectively. Both values are close to 1 when
n is large, and we find the approximations

19*
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Determination of the roots, with location
in the complex plane, of the equations

(®) 25—x—1 =0,
(®) x5+x+1 =0

=1
—i)R,
(4.4) R,~14+n1ln2, r,~1-n1llnn.

For p= + /2, we have r=R,12>1. The curve (4.3) cuts through the
unit circle r=1 for cosp= —$}, ¢= +27n/3. We made use of this fact at
the beginning of Section 3 above.

The arguments ¢ of the roots of (4.1) can be easily determined graphi-
cally. From the second equation (4.2), we get
sinng 1

- = + .
sing yn-1

(4.5)

When 7 is determined as a function of ¢ by the graph of (4.3), both
sides of (4.5) may be represented graphically for 0 < ¢ <x. The arguments
of the roots are then found among the intersections of the two curves.
A closer examination reveals that we must use those intersections which
lie to the left on each of the (positive or negative) “waves’ of sinng [sing,
ag illustrated for » =5 in fig. 1.

The possible real roots of (4.1) are =R, and = —r,. It is imme-
diately seen that R, is always a zero of f,(x) (cf. (1.5)), while —r, is a
zero of f;(x) for even n, but of f,(x) for odd n.
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5. We are now able to prove Theorem 1. For this purpose, we intro-
duce the following function of the roots: Let f(z), of degree n, have the
zeros z; (all +£0). We define

(5.1) s(e) = 3 ( ,-—xij) ,

Jj=1

that is, the sum of the roots less the sum of their reciprocals. — Clearly, S is
additive by any factorization of f(x). As a symmetric function of the roots,
8§ is rational, and integer if the constant term of f(x), in normalized form,
is + 1. In the latter case, any factorization of f(x) must yield an integer
partition of S ( f(x)), since a rational factor of f(z) must then also have a
constant term + 1.

For both functions f;(z) and f,(x) of (1.5), we find

(5.2) S(fe@) =1, k=12.

On the other hand, by substituting x;=re®, 2;-1=r-1e-% in (5.1), and
summing ¢n pairs over conjugate imaginary roots, we get

1 r2—1

(5.3) (=)= X2

Zj O<op<n

cos @ .

For possible real roots, with cosp= + 1, the factor 2 must be omitted.
For the polynomials f,(z), the sum (5.3) will contain negative terms

only in the interval #/2 <@ < 2x7/3, where cosp <0, r>1 (cf. fig. 1). It

is not difficult to conclude from (4.4) that the negative part of the sum

will always be <1 in absolute value (but this fact is not needed for com-

pletion of the proof). Consequently, any factorization of f,(x) must

yield the integer partition

(5.4) 1=0+1

of the sum (5.2).

If we leave aside for a moment the possible factor z2+z+1 of f,(z)
(where r=1, §=0), one factor of f, () must contain some terms of boih
signs in the sum (5.3). As the negative terms all have r>1, we must
compensate for this by taking some roots from the interval 27/3 < <=,
where r <1, since the product of the roots must be + 1. However, this
is not possible without “over-compensation’ for the sum S, which becomes
>0. A partition of the type (5.4), and thereby a factorization of f,(x),
consequently becomes impossible.

To carry through this idea in precise mathematical terms, we sub-
stitute for cosg in (5.3) the expression (4.3):
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r2—1 r2—1 rin_p2_1
2——cosp = 2 .
r

T 2r

1 1
= 220202 _ —
=3 r2 4 r2n=2(y 1)27~2 1,

since r2"~2(r2 — 1) 2 r2 — 1, with equality only for r = 1, that is, for a possible
factor #*+x+1. If we remember that the sum (5.3) is taken over con-
jugate imaginary roots in pairs, we get the following inequality for the
sum 8 for any factor of f(x):

5:5) s-3(a-)ziz(E).

The sum is now taken over all roots (real or complex) separately.
On the other hand, the product of the modulus over the same roots
must give unity:

1
[[r=1, or ﬂ—2=1.
r

The geometric mean of all r—2 is consequently =1. Since this is always
< the arithmetic mean (again with equality only for all r=1), it follows

for the sum in (5.5) that
§z0.

Equality can occur only for the factor 2+ x + 1. This concludes the proof
of Theorem 1.

6. Whenever a new method has been developed, one tries to apply
it also to cases other than those for which it was originally designed.
In this instance, however, it seems that my method is ““tailor-made’ for
the polynomials f;(z) and f,(z), and for these only. After a series of
attempts to generalize to other polynomials, especially of the type
" +axz+b, I feel convinced that my method will lead to no new proofs
of irreducibility. (The case b= +1 is already covered by Theorem 2,
and for |b|>1, all arguments are destroyed by the fact that the sum S
may become fractional).

Let us consider the polynomials

v +x2+1.

When = is even, all four combinations of signs will here lead to essentially
different cases. For simplicity, we shall only deal with the combinations

f@) = 2"+ (2*+1) .
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Treating these as we did with f,(z) in Section 4 above, we find

rin—rt—1

cos 2¢p = 272
7

Because of 2g¢, it is here natural to replace the sum (5.1) by

1
2 (xiz‘x—jg) .

Exactly as in Section 5, we find that this sum is >0 for any factor of
f(x), with equality only for a possible factor with all r=1. However,
the corresponding sum for f(z) itself (for » > 4) has the value 2, not 1.
We can therefore not conclude irreducibility, only the existence of at
most two irreducible factors.

A similar argument, with all inequalities reversed, holds for 2 + (z2—1).
More generally, we can show that the polynomials

(6.1) Fx) =z"+a2™+ 1, 1=m= in,

have at most m irreducible factors, in addition to a possible factor with
all r=1. This result is contained as a part of

THEOREM 3. The following results hold for the factorization of the tri-
nomials (6.1):

1° All possible roots with modulus 1 are roots of a rational factor, typified
by

if

a@ 42t 41 | 22"+ 1 = @)+ @)™ +1,
n=mnd, m=mgd, (n,m)=1 mn+m =0 (mod3),

and all those cases resulting from changing the sign of x2.

2° Apart from a possible factor of the above type, there are at most m
irreducible factors, all of degree >5 for n>1.

3° If F(x) is irreducible or has a factor x?¢ + 2%+ 1 and a second, ir-
reducible factor, then F(x?) has the same property.

4° All polynomials F(x) have this property for n<20 (and hence for
n <40 when n and m are both even).

7. We shall only indicate the proof of Theorem 3.—The result 1° is
established by forming an expression for cosme similar to (4.3), and
examining the case r=1. The arguments are tedious but straightforward.
It should be noted that the factor

x3d Fl

w2 taitl =
- 2?F 1
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may itself be reducible, cf. (11.2). Changing the sign of x? is not the same as
changing the sign of x itself, if d is even.

A proof of the first statement under 2° is already sketched in Section 6.
The second statement may be proved as follows: Since F(0)= +1 and
F(+1)=+1 or 43, we get a very limited choice of values y(0) and
y(+ 1) for a possible factor y(x) of F(x). For each set of values, ()
is uniquely determined mod (#3®—=x). A closer examination shows that
a possible quadratic factor of F(x) must have one of the forms

2+r+1.

The constant term + 1 gives a factor with all »r=1. The term —1 is
impossible, since the roots then differ too much from 1 ¢n absolute value
to be roots of F(x).

Similarly, the possible cubic factors of F(x) are given by

B+t or »+a+l,

all with one real root. The same argument shows that this root can not
satisfy F(z)=0 for n>5. An exception for n=5 is given by (3.1).

In the same way, by factorizing F (¢) in the field K (), we get a limited
choice of values y(i). For each choice, y(x) is uniquely determined
mod (z2+1). Combining this with the earlier modulus (x®—z), we get a
limited (but rather large) number of alternatives mod (25—2z) for a
possible factor y(x) of F(x). Using the same principle, we find that the
resulting factors of degree 4 or 5 (apart from x*+2%+1) can not occur
for n>18, and hence not for »>7 by 4° of Theorem 3. An exception
(a factor of degree 5) occurs for n="7, m=2, cf. 1°.

The statement 3° is proved in Section 11 below. Because of this result,
the cases when n and m are both even could be left out in the numerical
computations.

To prove the result 4°, I have mainly used a primality criterion of
Polya and Szego [10, Part 8, Problem 127]: Since all the roots of the
polynomials (6.1) have an absolute value <1.5 for n>2, the criterion
shows that F(z) ¢s irreducible if F (k) is a prime for an integer argument
k such that |k|>1. Replacing z by 1/x, we can argue similarly with
k»F(1/k). More generally, the criterion can be extended to the case
a™F (b/a), provided that all the roots of F'(x) have a modulus < (|b] — 3)/|a|.

As shown in Section 8 below, the criterion of Pélya and Szegd can be
extended to cover the case |F(k)|=t-p, where p is a prime and ¢ is a
small factor.

The cases F(z2) are completely settled by the result 3°. Some informa-
tion regarding #(2®) can also be obtained, cf. Section 9.
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By combining these different principles, I have been able to establish
the result 4° of Theorem 3. For 14<n <20, F(+2) and 2*F(+}) are
the only values which can be examined directly by Lehmer’s factor
table and list of primes to 107. In spite of this limitation, it was only
in three cases necessary to seek information outside these tables, namely
for F(x) = 2"+a%+1, B 4+ax"+1, 2 —xt+1.

The primality of 3"F(—3) in each of the cases was established by Dr.
C.-E. Froberg on the electronic computer SMIL in Lund, Sweden.

It would be of great interest if it could be proved that the last state-
ment of Theorem 3 holds for all polynomials F(x), or if a counterexample
could be found. As it is, I have only been able to settle completely the
case m=1.

8. As already mentioned, the criterion of Pdlya and Szegs can be
extended to cover the case

(8.1) |F(k)| =t-p, t<p, p prime,

when ¢ is a small factor.
Let M >1 be an upper bound for the absolute values of the roots of
F(x). For a polynomial 2™ +a™+ 1 (m<n), M is given by the positive

real root of the equation
Mr=Mm+1.

Here clearly M ~1 for large n. We shall treat only this case; the same
principle applies for greater values of M.

Let F(z)=Aya™+ A,2™ 1+ ... have a factor ¢(x)=a,2?+a, 2?1+ ...
(g=<4n), with roots «,, &,, ..., x;, and let k denote a rational integer
such that |k|>1. Then

lp(k)] = laol k=l [k —agl. ..k —ag 2 (k|—M)2,
which is impossible by (8.1) if
(8.2) t < (|k|—M)2.

This irreducibility criterion is due to Weisner [12]. However, it is useless
in the most important case |k|=2, and can be improved.

Following the idea of Polya and Szegt, we take into account the fact
that ¢(+1)+0. Let e= +1, with the same sign as k. Then

lp(e)] = laol le— - le—ay|. .. [e—agf2 1.

With this additional condition, it can be shown that we get a (theoretical)
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minimum for |p(k)| when |ag|=1, and when all the roots of @(x) have
the property )
losl = M, |le—e;] =1, ¢=1,2,...,q.

lk—oy] = (k2 — (k| =DM},

which may be substituted for |k|—M in (8.2), thereby improving the
criterion.

For the polynomials (6.1), I knew that ¢ =4 for n > 5. A factorization
(8.1) consequently showed irreducibility if

t < (k2 — (k| —1)DM2).

This gives

This criterion proved very useful also for |k|=2. To indicate the strength
of the condition, we may mention that the inequality is then always
satisfied for t<7 when n2=9.

9. When » and m are both even, the polynomials (6.1) are of the type
F@) = f(a?).

In this section, we will study such polynomials in general, under the
assumption that f(x) is ¢rreducible, and shall establish some obvious
criteria for the irreducibility of f(a2).

Let f(x) be of degree n, with the highest term a». It is easily seen that
the only possible factorization of f(z%) must have the form

(9.1) F(z) = f(2°) = (-1)"g9(x)g(—7=),
where g(z) is ¢rreducible. With

gx) = 2"+ a, 2" 1+ a2" 2+ ... +a,,
we get
(9.2) F(z) = f(2?) = @ +a2" 2+aa"2+...)2—

— (@ 2" 14+azam3+ .. .)2.

Clearly f(«2) is irreducible if
(9.3) (=1)*f(0) s not a perfect square .

Let & be a rational integer. From (9.2), we see that F(k)=f(k?) is a
difference between two squares, which is impossible if f(k?)=2 (mod 4).
For even k, this is already contained in (9.3), but we get a criterion for
the irreducibility of f(x?) for odd k:

J1) =2 (mod 4).

More information can be obtained from a (purely) imaginary value of
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the argument. Then F(ik)=f(— k?) is real, and |f(—k?)] is a sum of two
squares. Consequently, f(x2?) is irreducible if |f( — k2)| is exactly divisible by
an odd power of a prime 4h+ 3. In particular, this is the case if

(9.4) [f(—=%%)| =3 (mod4), or =6 (mod 8).

The criteria (9.3-4) are necessary to establish Theorem 4 of Section
10 below, and thereby the result 3° of Theorem 3.
We can prove similar results for a polynomial

F(z) = f(a?) .

With the same assumptions for f(x), a possible factorization must have
the form

F@) = f@) = g@)6(@) = g@)g(er)gle®), ¢ = e¥in.

In particular, f(0) must be a perfect cube (always satisfied for the poly-
nomials (6.1)). Further, f(£%) can be written as

(X+Y+Z) X+ Yo+Zo®) (X +Yo2+Zo) = X3+ Y3+ 23—3XYZ,

with integers X, ¥ and Z. This cubic form is never exactly divisible
by 3, and f(#®) is consequently irreducible if

f() or f(—1)= £3 (mod?9).
This condition was useful when examining the polynomials (6.1).
10. When f(x) is a trinomial, we can obtain additional information

regarding the irreducibility of f(x%). By operating modulo 4, we can
prove the following

TrHEOREM 4. Let
flx) = 2" +az™+b (m < n)

be an irreducible trinomial satisfying the conditions

(10.1) Bra, 21b, n+2m,
or
(10.2) a =1 or 2 (mod 4), 21b.

Then f(x?) is also irreducible.

Proor. We know that f(#2) must have the form (9.2). Multiplying
out, we get

fa®) = 2 +ax?+b = a?+ A2 2L 4 a4 L,
where
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A2 = 2“2 - alz
A, = ay%+ 20, — 20,04
Ag = 2a,a,+ 2a5—az®— 2a,05

=
I

ag% + 2a,04 + 204 — 20,0, — 2040,

...............................

All coefficients ay=0 for N >n.

Let first a be odd. If A,=0, both a, and a, are even, and so also 4,.
Consequently 4,=a is impossible, and we must have 4,=0, a, even.
If also A3=0, both a; and ag are even. We conclude similarly that
Ag+a, Ag=0, ag even. Continuing the argument, we see that 4, +a,
and that a factorization of f(x?) is impossible if » and m have the same
parity. More generally, we have clearly established the irreducibility of
Jf@?) if
(10.3) f(@) = 2"+ (2R + 1)an-2k 4 |
is irreducible. :

When » and m have opposite parity, the case a= +1 (mod 4) can be
excluded by similar arguments. If 4,=a, both a, and a, are odd, and
so also 4,, which is impossible (always if b is even; as a consequence of
n=+2m if 6 is odd). If 4,=4,=0, Ag=a, we get a,, a, and a, even, a,
and ag odd, which again is impossible (either » <6, and so a;=0; or
n2 6, but then 4,, is odd), ete.

Ifa= —1 (mod 4), we must have b odd by (10.2). It follows from (9.3)
that b= (—1)* (mod 8) (since otherwise f(x?) is certainly irreducible).
For a sufficiently large odd integer k£, we then have

(10.4) f(=E)] = (~1"f(=k2) = k" + (= Lymsnaken+ (~ 1)
= 2+ (—1)™"a (mod 8).

When n and m have opposite parity, and a= —1 (mod 4), we get
|f(—%?)| =3 (mod 4), and the irreducibility of f(x?) follows from (9.4).

Let next 2|ja (“exactly divide”). If then 4,=a, we must have @, even,
a, 0dd, and so 4, odd, which is impossible (always if  is even; as a conse-
quence of n+2m if b is odd). Hence 4,=0, a, and a, even. If 4,=a,
we get a, odd, which again is impossible by a similar argument, etc.

Let finally 2%|la, 2 +b. We then get |f(—%?)|=6 (mod 8) by (10.4),
and the irreducibility of f(a2) follows from (9.4). i

This concludes the proof of Theorem 4. It is clear that the theorem
can be shown valid under less restrictive conditions than (10.1-2), by
further considerations modulo 4, or by the criteria of Section 9. However,
the conditions imposed on a and & are then not so simple.
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11. By means of Theorem 4, it is now easy to prove the result 3° of
Theorem 3. We assume that

F(x) = f(a?) = 2>+’ + 1,
where f(x) is either irreducible or has a factor
(11.1) e(x) =22+2%4+1, d= (n,m),

and a second, irreducible factor.

We first dispose of the case n=2m. With the constant term + 1, F(x)
is then itself of the form (11.1). With the constant term —1, no factor
(11.1) can occur, and F(x) is irreducible by (9.3).

The case of irreducible f(x) is then completely covered by Theorem 4,
and we must only examine the effect of a factor e(a?)=E (z).

When d is even, all exponents of F (x), E(x) and F(x)/E (x) are divisible
by 4, and the irreducibility of the quotient follows from (10.3).

The upper sign in (11.1) gives

(11.2) E(x) = e(2?) = 248+ 22 4+ 1 = (22 420+ 1) (228 —ad+1),

which for odd d is of the form (9.1), E(x)=g(x)g(—=). This would then
also be the case for F'(x) itself if the quotient were reducible, and the proof
of Theorem 4 can be applied.

It thus only remains to consider the lower sign in (11.1) for odd d.
We may assume that m < in, and then get the quotient

2n 2m
F(z) _yrtemal x2n-4d 4 g2n-6d _ g2n-10d _
Ex) at9—g241 Y

Wﬁere the term x2"-%¢ js missing, cf. (3.1). The argument following (10.3)
then shows that the quotient is irreducible. This completes the proof.
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