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THE RATIONAL SOLUTIONS
OF THE DIOPHANTINE EQUATION
n*=&-D FOR |D| <100

ERNST S.SELMER

1. In his paper [1] on the rational solutions of the diophantine equation
(1) nt=8-D,

Cassels has given a set of necessary congruence conditions for solubility.
I have later [6] extended and completed these conditions. Cassels also
gives a table of solutions of infinite order for all |D|<50. Within these
limits, the congruence conditions turn out to be sufficient for solubility
of (1). (This is not always the case, cf. my counterexamples [5].)

Cassels works in the purely cubic field K (D?). Shortly before Cassels’
paper appeared, Podsypanin [4] had published a study of the equation
(1) in the quadratic field K (( —D)*), together with a table of basic solu-
tions for |D| < 89. In an addendum [2], Cassels pointed out several errors
for |D| £50 in Podsypanin’s table.

The rational solutions of (1) correspond to the integer solutions of

(2) y2 = 23— D8,

with §=x[t?, n=y[83, (x,t)=(y, t)=1. By combining the tables of Cassels
and Podsypanin, and adding some new solutions, I have constructed a
table for the equation (2) for |[D| <100, appearing below.

2. In my table, the number of solutions given for each .D represents
the number of generators (basic solutions) of infinite order; this number
does not exceed 2 for |D|<100. As in Cassels’ paper, I have not really
checked the basic character of the solutions. This could be done, but
involves a considerable amount of computation (cf. Cassels’ Lemma 11).
However, I have checked by Cassels’ methods that no solution of the
table is the duplication of another solution. In the case of two generators,
of elliptic parameters «, and u,, it is also verified that u; —u, gives no
duplication. In addition to this check (also performed by Cassels for

Received June 1, 1956.



282 ERNST 8. SELMER

|D| £560), I have used Podsypanin’s methods (cf. below) to verify that
no solution, including u, + #, and u, — u, for two generators, is a triplication.

For several values of D, many solutions are known. In particular,
all presently known <nfeger solutions of (1) for |[D| =100 are listed by
Hemer [3]. In such cases, I have also checked that these solutions can
all be expressed (as linear combinations of elliptic parameters) in terms
of the solutions in my table. I would be very surprised if my solutions
were not all fundamental.

The numbers of generators for 50 < |D| <100 were found by means of
Cassels’ conditions, which turned out to be sufficient within these limits.
The required class-numbers 4 and units ¢ of the corresponding cubic
fields K(D%) =K (8) were taken from my table [7]. This does not con-
tain the values of ¢ (in Cassels’ notation) for even %. Since the actual
cases all have 2|/A (‘“‘exactly divides’), essentially only one y occurs,
given by the following table (for cubefree D only):

D bk y D bk y D & y
57 6 -2+ 65 18 14+46 79 6 20—-4
58 6 33—8¢ 66 6 1449 83 2 33—446
61 6 —39+104 67 6 10+30 89 2 -4+
63 6 9—26 76 6 —3+496

As in the corresponding table of Cassels for D <50, the y’s are chosen
as quadratic residues of 4 whenever ¢ is not such a residue.

3. Podsypanin’s methods are based on the well-known birational con-
nection between the equations
®) 7= 8-D
(4) = &3+ 21D.
A rational solution of (3) is said to be generable if and only if it can be

derived from a solution of (4). The necessary and sufficient condition
for this is that

(5) n+(-D}t =a2  xeK((—D)}).

To verify that a solution is non-generable, the equation (5) must be
shown impossible modulo some prime p=3%+1 such that p factorizes
in K((—D)}), i.e. such that the congruence

d2+D = 0 (mod p)
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is soluble. The equation (5) is then impossible if 7 + d is a cubic non-restdue
of p.
No new information is obtained by using both signs of d, since

n+d)(n—d) = 2—d? = 2+ D = £ (mod p) .

The factors of the left hand side are consequently both cubic residues or
both non-residues of p.

Since — 3 is a quadratic residue of all primes p=3h+ 1, the same primes
p will factorize in both fields K((— D)) and K ((27.D)), corresponding
to the equations (3) and (4) respectively.

As in Podsypanin’s table, I indicate for each solution whether it is
generable (g9) or non-generable (»). In the case of two generators, one
of each type, no further problems arise (but it was in some cases, for
D= —15, —24, — 37, 39, necessary to replace a (n)-solution in Cassels’
table by a usually more complicated (g)-solution). However, if both
solutions are of the same type, say (n), it must also be shown that their
sum and difference (in terms of elliptic parameters) are non-generable.
For two (g)-solutions, the same check must be performed on the generat-
ing solutions. —Since the transformation from (n)- to (g)-solutions corre-
sponds to multiplication of elliptic arguments by (—3)% we also get
the check on #riplications mentioned earlier.

4. Cassels’ table for |D| <50 is error-free, whereas Podsypanin’s table
must be characterized as extremely inaccurate. It containsin all 26 errors:

(i) No generators are given for D= +43, 50, 51, 57, —67, — 68, — 69,
75, 84, and insufficient generators for D= — 15, 39, 83.

(ii) For D= —28, Podsypanin’s solution (—3, 1, 1) is the duplication
of (2, 6, 1). For D =48, his second solution is the triplication of the first
one. For D=67, his first solution is the duplication of (17, 25, 2). For
D= —80, the first solution is the duplication and the second one the
triplication of (4, 12, 1).

(iii) Incorrect values (including sign) of z or y occur in the cases

= —63, 66, —76, —177, 89.

(iv) For D=11, all solutions are generable. There is one solution of
each type for D= —24. For D=26, the (g)-solution is Cassels’, not
Podsypanin’s second solution. The solution for D =29 is generable.

The errors for D= —15, 39, +43, 48, 50 (but not the duplication for
D = — 28) were also pointed out by Cassels [2]. —In addition to the above
corrections, I have replaced one of Podsypanin’s (correct) solutions by
a simpler one for D=11 (Cassels), —37, — 65, —89. On the other hand,
Podsypanin’s simpler first solution has replaced the corresponding one
of Cassels for D=47.
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Solutions of y2=x®— D18 of infinite order.

D (z, 9, 1) D (=, ¥, 1)

2| (3,5,1) g 57 (4 873, 340 165, 6) g

4| (2,21) g 58 (5 393, 387 655, 22) g

70 (21,1) n 59 (6 715, 545 644, 21) g
11 | (8,4,1) g 60 4,2, 1) n

» | (15,58, 1) g 61 (5,8, 1) n
13 | (17,70, 1) g " (8 785, 680 698, 39) g
15 | (4,7,1) n 63 4,1,1) n
18 | (3,38, 1) n 65 (32 049,

19 | (7,18,1) g 2573303,86) | ¢
20 | (6,14,1) g 66 (357 361,

21 | (37,188, 3) g 213574 985,84) | ¢
22 | (71,119, 5) g 67 (17, 25, 2) g
23 | (3,2,1) n ', (23, 110, 1) g
25 | (5,10,1) n 71 (8, 21, 1) n
2 | (3,1,1) n | 72 (6,12, 1) n

» | (35,207, 1) g 74 (99, 985, 1) g
28 | (4,6,1) n | 75 (91, 836, 3) g
29 | (3133, 175 364, 3) g 76 (5,7,1) g
30 | (31,89,3) g " (101, 1 015, 1) g
35 | (11, 36,1) g 79 (20, 89, 1) n
38 | (4447, 291 005, 21) g 81 (13, 46, 1) g
39 | (4,5,1) n 83 (27, 140, 1) g

» | (43,226, 3) g " (33, 175, 2) g
40 | (14,52, 1) g 84 (46, 190, 3) g
43 | (1177, 40 355, 6) g 85 (1 552 601,

44 | (5,9,1) g 1934 117 206,
45 | (21, 96,1) n 167) | g
47 | (6,13,1) n | 87 (7,16, 1) n

» | (63,500, 1) g 89 (5,6, 1) n
48 | (4, 4,1) n " (233, 1 476, 7) g
49 | (65,524, 1) g 91 (25, 99, 2) g
50 | (211, 3059, 3) g 93 (1 249, 29 818, 15) g
51 | (1375, 50 986, 3) g 94 (11 614 031,

53 | (9,26,1) n 24 303 384 785,

» | (4481,299 871, 10) g 1477) | ¢
54 | (7,17,1) g 95 (6,11, 1) n
55 | (4,3,1) n | 100 (10, 30, 1) n
56 | (18,76,1) g
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Solutions of y?=a3—

D8 of infinite order.
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D (=, 9,%) D @, 9,1
- 2 (-1,1,1) n — 54 (3,9, 1) n
-3 | (1L,2,1) n —55 (9, 28, 1) n
-5 | (-1,2,1) g —56 (2,8,1) n
— 8| (2,41) n — 57 (7, 20, 1) n
-9 (-2,1,1) n " (—2,7,1) n
—10 | (=1,3,1) n —58 (241, 4 087, 6) n
—11 | (=17,19,2) n —61 (—15, 23, 2) g
—12 | (-2,2,1) n —62 (1, 63, 2) n
—15 (1,4, 1) n —63 (1,8, 1) n
» (—11, 98, 3) g » (—3,6,1) n
—17 | (=1,4,1) n —-65 (-1,8,1) n
o | (—2,8,1) n . (—4,1,1) n
—18 | (7,19,1) n —66 (1, 65, 2) n
—19 | (5,12,1) n — 67 (49, 1 801, 6) n
-22 | (3,7,1) n —68 (—4,2,1) n
—24 | (-2,4,1) n —69 (-5, 224, 3) g
» | (—23,73,3) g -71 (5,14, 1) n
-26 | (-1,5,1) n —72 (-2,8,1) n
—28 | (2,6, 1) n —~73 (3,10, 1) n
—30 | (19,83,1) n ” 2,9,1) n
-31 | (-3,2,1) n -4 (7, 233, 3) n
—33 | (-2,51) n —76 (—3,7,1) n
-35 | (1,6,1) n -7 (—61, 988, 5) g
—36 | (-3,3,1) n —79 (45, 302, 1) n
—37 (-1,6,1) n » (—6 335,154 088,39)| ¢
s | (=17,45,2) g —80 (4,12, 1) n
—38 | (11,37,1) n —82 (-1,9,1) n
-39 (217, 3 197, 2) n - 83 (2 641, 135737, 6) n
—40 (6, 16, 1) n -89 (—4,5,1) n
—41 (2,7, 1) n " (—2,9,1) n
—43 (—3,4,1) n -91 (—3,8,1) n
» | (57,2290, 7) g —92 (2,10, 1) n
—44 | (—2,6,1) n —94 (3,11, 1) n
—46 | (-17,51,2) n -97 (18,717, 1) n
—47 | (17,89, 2) n -98 (7,21,1) n
—48 (1,7, 1) n -99 (1, 10, 1) n
—50 | (=1,7,1) g | —100 (—4,6,1) n
—52 (—3,5,1) g
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