THE RATIONAL SOLUTIONS OF THE DIOPHANTINE EQUATION

 $\eta^2 = \xi^3 - D \text{ FOR } |D| \le 100$

ERNST S. SELMER

1. In his paper [1] on the rational solutions of the diophantine equation

$$\eta^2 = \xi^3 - D ,$$

Cassels has given a set of necessary congruence conditions for solubility. I have later [6] extended and completed these conditions. Cassels also gives a table of solutions of infinite order for all $|D| \le 50$. Within these limits, the congruence conditions turn out to be *sufficient* for solubility of (1). (This is not always the case, cf. my counterexamples [5].)

Cassels works in the purely *cubic* field $K(D^{\frac{1}{2}})$. Shortly before Cassels' paper appeared, Podsypanin [4] had published a study of the equation (1) in the *quadratic* field $K((-D)^{\frac{1}{2}})$, together with a table of basic solutions for $|D| \le 89$. In an addendum [2], Cassels pointed out several errors for $|D| \le 50$ in Podsypanin's table.

The rational solutions of (1) correspond to the integer solutions of

$$(2) y^2 = x^3 - Dt^6,$$

with $\xi = x/t^2$, $\eta = y/t^3$, (x, t) = (y, t) = 1. By combining the tables of Cassels and Podsypanin, and adding some new solutions, I have constructed a table for the equation (2) for $|D| \le 100$, appearing below.

2. In my table, the number of solutions given for each D represents the number of generators (basic solutions) of infinite order; this number does not exceed 2 for $|D| \le 100$. As in Cassels' paper, I have not really checked the basic character of the solutions. This could be done, but involves a considerable amount of computation (cf. Cassels' Lemma 11). However, I have checked by Cassels' methods that no solution of the table is the duplication of another solution. In the case of two generators, of elliptic parameters u_1 and u_2 , it is also verified that $u_1 - u_2$ gives no duplication. In addition to this check (also performed by Cassels for

Received June 1, 1956.

 $|D| \le 50$), I have used Podsypanin's methods (cf. below) to verify that no solution, including $u_1 + u_2$ and $u_1 - u_2$ for two generators, is a triplication.

For several values of D, many solutions are known. In particular, all presently known *integer* solutions of (1) for $|D| \le 100$ are listed by Hemer [3]. In such cases, I have also checked that these solutions can all be expressed (as linear combinations of elliptic parameters) in terms of the solutions in my table. I would be very surprised if my solutions were not all fundamental.

The numbers of generators for $50 < |D| \le 100$ were found by means of Cassels' conditions, which turned out to be sufficient within these limits. The required class-numbers h and units ε of the corresponding cubic fields $K(D^{\frac{1}{2}}) = K(\delta)$ were taken from my table [7]. This does not contain the values of γ (in Cassels' notation) for even h. Since the actual cases all have 2||h| ("exactly divides"), essentially only one γ occurs, given by the following table (for cubefree D only):

D	h	γ	D	h	γ	D	h	γ
57 58 61 63	6 6 6	$-2 + \delta$ $33 - 8 \delta$ $-39 + 10 \delta$ $9 - 2 \delta$	65 66 67 76	18 6 6 6	$14 + \delta$ $1 + 4 \delta$ $10 + 3 \delta$ $-3 + \delta$	79 83 89	6 2 2	$20 - \delta$ $33 - 4\delta$ $-4 + \delta$

As in the corresponding table of Cassels for $D \le 50$, the γ 's are chosen as quadratic residues of 4 whenever ε is not such a residue.

3. Podsypanin's methods are based on the well-known birational connection between the equations

$$\eta^2 = \xi^3 - D$$

$$\eta_1^2 = \xi_1^3 + 27D.$$

A rational solution of (3) is said to be *generable* if and only if it can be derived from a solution of (4). The necessary and sufficient condition for this is that

(5)
$$\eta + (-D)^{\frac{1}{2}} = \alpha^3, \quad \alpha \in K((-D)^{\frac{1}{2}}).$$

To verify that a solution is non-generable, the equation (5) must be shown impossible modulo some prime p=3h+1 such that p factorizes in $K((-D)^{\frac{1}{2}})$, i.e. such that the congruence

$$d^2 + D \equiv 0 \pmod{p}$$

is soluble. The equation (5) is then impossible if $\eta + d$ is a cubic non-residue of p.

No new information is obtained by using both signs of d, since

$$(\eta + d)(\eta - d) = \eta^2 - d^2 \equiv \eta^2 + D = \xi^3 \pmod{p}$$
.

The factors of the left hand side are consequently both cubic residues or both non-residues of p.

Since -3 is a quadratic residue of all primes p=3h+1, the same primes p will factorize in both fields $K((-D)^{\frac{1}{2}})$ and $K((27D)^{\frac{1}{2}})$, corresponding to the equations (3) and (4) respectively.

As in Podsypanin's table, I indicate for each solution whether it is generable (g) or non-generable (n). In the case of two generators, one of each type, no further problems arise (but it was in some cases, for D=-15, -24, -37, 39, necessary to replace a (n)-solution in Cassels' table by a usually more complicated (g)-solution). However, if both solutions are of the same type, say (n), it must also be shown that their sum and difference (in terms of elliptic parameters) are non-generable. For two (g)-solutions, the same check must be performed on the generating solutions. — Since the transformation from (n)- to (g)-solutions corresponds to multiplication of elliptic arguments by $(-3)^{\frac{1}{2}}$, we also get the check on triplications mentioned earlier.

- 4. Cassels' table for $|D| \le 50$ is error-free, whereas Podsypanin's table must be characterized as extremely inaccurate. It contains in all 26 errors:
- (i) No generators are given for $D = \pm 43$, 50, 51, 57, -67, -68, -69, 75, 84, and insufficient generators for D = -15, 39, 83.
- (ii) For D=-28, Podsypanin's solution (-3, 1, 1) is the duplication of (2, 6, 1). For D=48, his second solution is the triplication of the first one. For D=67, his first solution is the duplication of (17, 25, 2). For D=-80, the first solution is the duplication and the second one the triplication of (4, 12, 1).
- (iii) Incorrect values (including sign) of x or y occur in the cases $D=-63,\,66,\,-76,\,-77,\,89.$
- (iv) For D=11, all solutions are generable. There is one solution of each type for D=-24. For D=26, the (g)-solution is Cassels', not Podsypanin's second solution. The solution for D=29 is generable.

The errors for D=-15, 39, ± 43 , 48, 50 (but not the duplication for D=-28) were also pointed out by Cassels [2].—In addition to the above corrections, I have replaced one of Podsypanin's (correct) solutions by a simpler one for D=11 (Cassels), -37, -65, -89. On the other hand, Podsypanin's simpler first solution has replaced the corresponding one of Cassels for D=47.

Solutions of $y^2 = x^3 - Dt^6$ of infinite order.

D	(x, y, t)		D	(x, y, t)	
2	(3, 5, 1)	g	57	(4 873, 340 165, 6)	g
4	(2, 2, 1)	g	58	$(5\ 393,\ 387\ 655,\ 22)$	g
7	(2, 1, 1)	n	59	$(6\ 715,\ 545\ 644,\ 21)$	g
11	(3, 4, 1)	g	60	(4, 2, 1)	n
,,	(15, 58, 1)	g	61	(5, 8, 1)	n
13	(17, 70, 1)	g	,,	(8 785, 680 698, 39)	\boldsymbol{g}
15	(4, 7, 1)	n	63	(4, 1, 1)	n
18	(3, 3, 1)	n	65	(32 049,	
19	(7, 18, 1)	g		2 573 303, 86)	\boldsymbol{g}
20	(6, 14, 1)	g	66	(357 361,	
21	(37 , 188, 3)	g		213 574 985, 84)	\boldsymbol{g}
22	(71, 119, 5)	$\mid g \mid$	67	(17, 25, 2)	\boldsymbol{g}
23	(3, 2, 1)	n	,,	(23, 110, 1)	g
25	(5, 10, 1)	n	71	(8, 21, 1)	\boldsymbol{n}
26	(3, 1, 1)	n	72	(6, 12, 1)	\boldsymbol{n}
,,	(35, 207, 1)	g	74	(99, 985, 1)	g
28	(4, 6, 1)	n	75	(91, 836, 3)	g
29	$(3\ 133,\ 175\ 364,\ 3)$	g	76	(5, 7, 1)	g
30	(31, 89, 3)	g	,,	(101, 1 015, 1)	\boldsymbol{g}
3 5	(11, 36, 1)	$\mid g \mid$	79	(20, 89, 1)	\boldsymbol{n}
38	$(4\ 447,\ 291\ 005,\ 21)$	g	81	(13, 46, 1)	\boldsymbol{g}
39	(4, 5, 1)	\boldsymbol{n}	83	(27, 140, 1)	\boldsymbol{g}
,,	(43, 226, 3)	g	,,	(33, 175, 2)	\boldsymbol{g}
40	(14, 52, 1)	g	84	(46, 190, 3)	\boldsymbol{g}
43	$(1\ 177,\ 40\ 355,\ 6)$	g	85	(1 552 601,	
44	(5, 9, 1)	g		1 934 117 206,	
45	(21, 96, 1)	n		167)	\boldsymbol{g}
47	(6, 13, 1)	\boldsymbol{n}	87	(7, 16, 1)	\boldsymbol{n}
,,	(63, 500, 1)	g	89	(5, 6, 1)	\boldsymbol{n}
48	(4, 4, 1)	n	,,	(233, 1476, 7)	\boldsymbol{g}
49	(65, 524, 1)	g	91	(25, 99, 2)	\boldsymbol{g}
5 0	(211, 3059, 3)	g	93	(1 249, 29 818, 15)	\boldsymbol{g}
51	(1 375, 50 986, 3)	g	94	(11 614 031,	
53	(9, 26, 1)	n		24 303 384 785,	
,,	(4 481, 299 871, 10)	g		1 477)	\boldsymbol{g}
54	(7, 17, 1)	g	95	(6, 11, 1)	\boldsymbol{n}
55	(4, 3, 1)	n	100	(10, 30, 1)	\boldsymbol{n}
56	(18, 76, 1)	g			

Solutions of $y^2 = x^3 - Dt^6$ of infinite order.

D	(x, y, t)		D	(x, y, t)	
- 2	(-1, 1, 1)	n	- 54	(3, 9, 1)	\overline{n}
- 3	(1, 2, 1)	n	- 55	(9, 28, 1)	n
- 5	(-1, 2, 1)	g	-56	(2, 8, 1)	n
- 8	(2, 4, 1)	n	-57	(7, 20, 1)	\boldsymbol{n}
- 9	(-2, 1, 1)	n	,,	(-2, 7, 1)	n
- 10	(-1, 3, 1)	n	-58	(241, 4087, 6)	n
-11	(-7, 19, 2)	n	-61	(-15, 23, 2)	g
-12	(-2, 2, 1)	n	-62	(1, 63, 2)	n
-15	(1, 4, 1)	n	- 63	(1, 8, 1)	n
,,	(-11, 98, 3)	g	,,	(-3, 6, 1)	n
-17	(-1, 4, 1)	n	-65	(-1, 8, 1)	n
,,	(-2, 3, 1)	n	,,	(-4, 1, 1)	n
-18	(7, 19, 1)	n	66	(1, 65, 2)	n
-19	(5, 12, 1)	n	-67	(49, 1801, 6)	\boldsymbol{n}
-22	(3, 7, 1)	n	-68	(-4, 2, 1)	n
-24	(-2, 4, 1)	n	-69	(-5, 224, 3)	g
,,	(-23, 73, 3)	g	-71	(5, 14, 1)	\boldsymbol{n}
-26	(-1, 5, 1)	n	-72	(-2, 8, 1)	\boldsymbol{n}
-28	(2, 6, 1)	n	73	(3, 10, 1)	\boldsymbol{n}
- 30	(19, 83, 1)	n	,,	(2, 9, 1)	\boldsymbol{n}
-31	(-3, 2, 1)	n	-74	(7, 233, 3)	\boldsymbol{n}
-33	(-2, 5, 1)	n	-76	(-3, 7, 1)	\boldsymbol{n}
-35	(1, 6, 1)	n	– 77	(-61, 988, 5)	g
-36	(-3, 3, 1)	n	-79	(45, 302, 1)	\boldsymbol{n}
-37	(-1, 6, 1)	n	,,	$(-6\ 335, 154\ 088, 39)$	\boldsymbol{g}
,,	(-7, 45, 2)	g	-80	(4, 12, 1)	n
-38	(11, 37, 1)	n	-82	(-1, 9, 1)	n
-39	(217, 3 197, 2)	n	-83	$(2\ 641, 135\ 737, 6)$	n
-4 0	(6, 16, 1)	n	-89	(-4, 5, 1)	n
-41	(2, 7, 1)	n	,,	(-2, 9, 1)	n
-4 3	(-3, 4, 1)	n	-91	(-3, 8, 1)	n
,,	(57, 2290, 7)	g	-92	(2, 10, 1)	n
-44	(-2, 6, 1)	n	-94	(3, 11, 1)	n
-4 6	(-7, 51, 2)	n	-97	(18, 77, 1)	n
-47	(17, 89, 2)	n	- 98	(7, 21, 1)	\boldsymbol{n}
-4 8	(1, 7, 1)	n	- 99	(1, 10, 1)	\boldsymbol{n}
-5 0	(-1, 7, 1)	g	-100	(-4, 6, 1)	\boldsymbol{n}
-52	(-3, 5, 1)	$\mid g \mid$			

REFERENCES

- 1. J. W. S. Cassels, The rational solutions of the diophantine equation $Y^2 = X^3 D$, Acta Math. 82 (1950), 243–273.
- J. W. S. Cassels, The rational solutions of the diophantine equation Y²=X³-D. Addenda and Corrigenda, Acta Math. 84 (1951), 299.
- 3. O. Hemer, Notes on the diophantine equation $y^2 k = x^3$, Arkiv för Mat. 3 (No. 3, 1954), 67-77.
- 4. V. Podsypanin, On the indeterminate equation $x^3=y^2+Az^6$, Mat. Sbornik N. S. 24 (1949), 391-403. (In Russian.)
- 5. E. S. Selmer, The diophantine equation $\eta^2 = \xi^3 D$. A note on Cassels' method, Math. Scand. 3 (1955), 68-74.
- 6. E. S. Selmer, On Cassels' conditions for rational solubility of the diophantine equation $\eta^2 = \xi^3 D$, Archiv for Math. og Naturv. 53 (No. 7, 1956), 1-23.
- 7. E. S. Selmer, Tables for the purely cubic field $K(\sqrt[8]{m})$, Avh. Norske Vid. Akad. Oslo. I. 1955, No. 5, 1-32.

UNIVERSITY OF OSLO, NORWAY