SUR L'INTÉGRALE DE DIRICHLET

B. MALGRANGE

Cet article a uniquement pour objet quelques remarques simples sur l'article précédent [2]. Pour simplifier, nous nous bornerons à étudier des intégrales de Dirichlet généralisées sur un ouvert $\Omega \subset \mathbb{R}^n$; une étude analogue pourrait être faite sans difficulté sur un espace de Riemann localement euclidien.

Soit donné un entier m > 0; nous désignerons par i un système d'entiers ≥ 0 , (i_1, \ldots, i_n) , avec $i_1 + \ldots + i_n = m$; nous poserons

$$D^{i} = \frac{\partial^{m}}{\partial x_{1}^{i_{1}} \dots \partial x_{n}^{i_{n}}}.$$

Considérons une forme hermitienne

$$Q = \sum_{i,j} a_{ij}(x_1, \ldots, x_n) \xi_i \overline{\xi_j} \qquad (\xi_i \in C);$$

les a_{ij} sont supposés être des fonctions indéfiniment différentiables définies dans Ω ; pour tout $(x_1, \ldots, x_n) \in \Omega$, nous supposons la forme Q définie positive. A la forme hermitienne Q, nous associons l'opérateur différentiel

$$D(f,g) = \sum_{i,j} a_{ij} D^i f \, \overline{D^j g}$$

et la forme sesquilinéaire

$$(f,g)_m = \int D(f,g) \, \partial x_1 \, \dots \, \partial x_n \, .$$

Nous poserons

$$||f||_{m^2} = (f, f)_m$$
.

Nous désignerons enfin par \mathscr{D}_{Ω} (resp. \mathscr{D}'_{Ω}) l'espace des fonctions indéfiniment différentiables à support compact $\subseteq \Omega$ (resp. des distributions sur Ω).

- 1. Considérons l'ensemble $B-L^m_{\Omega}(D)$ des distributions $f\in \mathcal{D}'_{\Omega}$ qui possèdent les propriétés suivantes:
 - a) Pour tout i, Dif est une fonction localement de carré sommable.
 - b) D(f,f) est une fonction sommable.

Reçu le 18 juillet 1956.

Comme il est bien connu la condition a) entraı̂ne que les f sont des fonctions localement de carré sommable ainsi que leurs dérivées jusqu'à l'ordre m; d'autre part, il est évident que $B\text{-}L^m_{\Omega}(D)$ est un sous-espace vectoriel de \mathscr{D}'_{Ω} . Sur $B\text{-}L^m_{\Omega}(D)$, la fonction $f \to ||f||_m$ est une seminorme; les éléments de $B\text{-}L^m_{\Omega}(D)$ qui annulent cette semi-norme sont les polynomes de degré $\leq m-1$; l'espace de ces polynomes sera désigné par P^{m-1} . Désignons par $B\text{-}L^m_{\Omega}(D)$ le quotient de $B\text{-}L^m_{\Omega}(D)$ par P^{m-1} .

PROPOSITION 1. L'espace $B:L^m_{\Omega}(D)$, muni de la norme $\|\cdot\|_m$, est complet.

Cette proposition se démontre comme [1, III, théorème 2.1]. Dans la suite, $B
ildes L^m_{\Omega}(D)$ sera toujours supposé muni de cette norme.

Désignons maintenant par $\mathscr{L}^m{}_\Omega$ l'espace des fonctions localement de carré sommable ainsi que leurs dérivées d'ordre $\leq m$ sur Ω , muni de la topologie de la convergence dans L^2 sur tout compact des fonctions et de leurs dérivées jusqu'à l'ordre m. D'après le résultat rappelé plus haut, on a

$$B-L^m_{\Omega}(D) \subset \mathscr{L}^m_{\Omega}, \quad \text{d'où} \quad B-L^m_{\Omega}(D) \subset \mathscr{L}^m_{\Omega}/P^{m-1}$$

Par suite, en appliquant la proposition 1 et le théorème du graphe fermé:

Proposition 2. L'injection $B:L^m_{\Omega}(D) \to L^m_{\Omega}/P^{m-1}$ est continue.

Notons en passant que la proposition 2 permet, en suivant un schéma indiqué par J. L. Lions [3], de résoudre un problème généralisant le problème de Neumann pour l'opérateur différentiel $\Lambda = \sum D^{j}(a_{ij}D^{i}\cdot)$ (cf. [3, note (27 bis) en bas de page 244]).

Occupons-nous maintenant du problème de Dirichlet; la fonction $f \to ||f||_m$ est une norme sur l'espace \mathscr{D}_{Ω} ; cet espace, muni de cette norme, sera désigné par $\mathscr{D}^m{}_{\Omega}(D)$; son complété sera désigné par $\mathscr{\widehat{D}}^m{}_{\Omega}(D)$.

Notation. P désigne l'ensemble des polynomes $p \in P^{m-1}$ qui possèdent la propriété suivante: Il existe une suite de fonctions $\varphi_i \in \mathscr{D}_{\Omega}$, qui tendent vers zéro dans $\mathscr{D}^m_{\Omega}(D)$ et vers p dans \mathscr{L}^m_{Ω} .

P est évidemment un sous-espace vectoriel de P^{m-1} .

Proposition 3. Soit Q un sous-espace vectoriel de P^{m-1} ; pour que l'application $\mathscr{D}^m_{O}(D) \to \mathscr{L}^m_{O}/Q$

(produit de l'injection $\mathscr{Q}^m_{\Omega}(D) \to \mathscr{L}^m_{\Omega}$ et de l'application canonique $\mathscr{L}^m_{\Omega} \to \mathscr{L}^m_{\Omega}(Q)$ soit continue, il faut et il suffit que l'on ait: $Q \supset P$.

DÉMONSTRATION. a) Montrons que, si l'on a $Q \supset P$, l'application envisagée est continue; il suffit de le démontrer pour Q = P; nous nous placerons donc dans ce cas, et nous raisonnerons par l'absurde.

Supposons done l'application

$$\mathcal{D}^m_{\Omega}(D) \to \mathcal{L}^m_{\Omega}/P$$

non continue; il existe une suite de fonctions $\varphi_i \in \mathcal{D}_{\Omega}$ qui tendent vers zéro dans $\mathcal{D}^m_{\Omega}(D)$ mais dont les images φ_i dans \mathcal{L}^m_{Ω}/P ne tendent pas vers zéro; d'après la proposition 2, l'application

$$\mathcal{Q}^m{}_{\Omega}(D) \to \mathcal{L}^m{}_{\Omega}/P^{m-1}$$

est continue, et, par suite, il existe une suite de polynomes $p_i \in P^{m-1}$, tels que l'image $\varphi_i + p_i$ de la suite $\varphi_i + p_i$ dans $\mathscr{L}^m{}_{\Omega}/P$ tende vers zéro (mais la suite p_i ne tend pas vers zéro!). En multipliant au besoin les φ_i par des constantes convenables on peut supposer que les p_i ont un point adhérent $q \neq 0$ dans P^{m-1}/P ; on peut alors extraire de la suite φ_i une suite ψ_j qui tende vers zéro dans $\mathscr{D}^m{}_{\Omega}(D)$, et telle que les $\psi_j + q$ tendent vers zéro dans $\mathscr{D}^m{}_{\Omega}(P)$.

Soit q un polynome $\in P^{m-1}$, dont l'image dans P^{m-1}/P soit égale à q; il existe une suite p'_j de polynomes $\in P$, telle que la suite $\psi_j + p'_j + q$ tende vers zéro dans \mathscr{L}^m_{Ω} ; mais en utilisant la définition de P, on construit facilement une suite χ_j de fonctions $\in \mathscr{D}_{\Omega}$, qui tendent vers zéro dans $\mathscr{D}^m_{\Omega}(D)$, et telles que les $\chi_j - p'_j$ tendent vers zéro dans \mathscr{L}^m_{Ω} . Alors, la suite $\psi_j + \chi_j$ tend vers zéro dans $\mathscr{D}^m_{\Omega}(D)$ et vers -q dans \mathscr{L}^m_{Ω} ; donc, on a $q \in P$, ce qui est absurde.

b) Supposons $P \not = Q$; il existe alors un $p \in P$, $p \not \in Q$. Par définition de P, il existe une suite de fonctions $\varphi_i \in \mathcal{D}_{\Omega}$ qui tendent vers zéro dans $\mathcal{D}^m_{\Omega}(D)$ et vers p dans \mathcal{L}^m_{Ω} ; les images $\varphi \cdot_i$ des fonctions φ_i dans \mathcal{L}^m_{Ω}/Q ne tendent donc pas vers zéro, et l'application envisagée n'est pas continue.

En notant comme l'habitude par $\langle \varphi, \psi \rangle$, l'intégrale $\int \varphi \psi dx_1 \dots dx_n$ (et ses généralisations aux distributions), on a le corollaire suivant:

COROLLAIRE. Pour qu'une fonction $\varphi \in \mathcal{D}_{\Omega}$ définisse, par l'application $\psi \to \langle \varphi, \psi \rangle$ une forme linéaire continue sur $\mathcal{D}^m_{\Omega}(D)$, il faut et il suffit que l'on ait $\langle \varphi, P \rangle = 0$.

2. Le principal problème relatif à l'espace $\mathscr{D}^m_{\Omega}(D)$ est le suivant: déterminer P en fonction des propriétés de Ω et des a_{ij} (en particulier, de la croissance des a_{ij} au voisinage du bord de Ω).

Lorsque les a_{ij} sont constants, et que l'on a $\Omega = \mathbb{R}^n$, la réponse est obtenue immédiatement par transformation de Fourier:

Math. Scand. 4.

Si n > 2m, P est réduit à 0. Si $n \le 2m$, P est l'espace P^k des polynomes de degré $\le k$, avec $k = m - \lceil \frac{1}{2}(n+1) \rceil$ ($\lceil \cdot \rceil$): partie entière).

En dehors de ce cas (pratiquement traité dans [2]), nous n'aborderons pas ce difficile problème, et nous nous contenterons d'examiner la question suivante: P étant supposé connu, quelles propriétés doit posséder un compact $K \subseteq \Omega$ pour que l'injection

 $\mathscr{Q}^m_{\Omega-K}(D) \to \mathscr{L}^m_{\Omega-K}$

soit continue? Lorsque cette dernière condition est vérifiée, nous dirons que « D admette un noyau de Green dans $\Omega - K$ ».

Nous nous appuierons sur un lemme analogue au lemme 3 de [2]; appelons $\mathscr{K}^{-m}{}_{\Omega}$ le dual de $\mathscr{L}^{m}{}_{\Omega}$; c'est un espace de distributions à support compact. Soit $\mathscr{K}^{-m}{}_{K}$ l'espace des distributions $\in \mathscr{K}^{-m}{}_{\Omega}$ dont le support est contenu dans K.

Lemme. Pour que D admette un noyau de Green dans $\Omega - K$, il faut et il suffit que l'application

$$\chi \to (p \to \langle \chi, p \rangle), \qquad \chi \in \mathscr{K}^{-m}_K, \quad p \in P$$

envoie \mathcal{K}^{-m}_{K} sur le dual de P.

DÉMONSTRATION. Si D admet un noyau de Green dans $\Omega-K$, toute fonction $\varphi\in \mathscr{D}_{\Omega-K}$ définit (par l'application $\psi\to \langle \varphi,\psi\rangle$) une forme linéaire continue sur $\mathscr{D}^m_{\Omega-K}(D)$. D'après le théorème de Hahn-Banach, cette forme linéaire se prolonge en une forme linéaire continue $\tilde{\varphi}$ sur $\mathscr{D}^m_{\Omega}(D)$; $\tilde{\varphi}$ est une distribution, qui coı̈ncide avec φ sur $\Omega-K$; et, par suite, on a $\tilde{\varphi}=\varphi-\chi$, χ étant une distribution à support dans K; en particulier, $\tilde{\varphi}$ est une distribution à support compact.

En outre, on a: $\bar{\varphi} \in \mathcal{K}^{-m}_{\Omega}$ (soit, en effet, α une fonction $\in \mathcal{D}_{\Omega}$ égale à un au voisinage du support de $\bar{\varphi}$; l'application $\psi \to \alpha \psi$ de \mathcal{D}_{Ω} dans \mathcal{D}_{Ω} se prolonge évidemment en une application continue $u: \mathcal{L}^{m}_{\Omega} \to \hat{\mathcal{D}}^{m}_{\Omega}(D)$; et $t_{u}(\bar{\varphi})$ est une forme linéaire continue sur \mathcal{L}^{m}_{Ω} , donc définit un élément de $\mathcal{K}^{-m}_{\Omega}$, qui coïncide avec $\bar{\varphi}$ en tant que distribution); par suite, on a: $\chi \in \mathcal{K}^{-m}_{K}$.

Ce qui précède, et la définition de P, entraînent immédiatement la formule $\langle \bar{\varphi}, P \rangle = 0$; pour tout $p \in P$, on a donc $\langle \varphi, p \rangle = \langle \chi, p \rangle$.

Comme toute forme linéaire sur P peut évidemment être réalisée par une application $p \to \langle \varphi, p \rangle$, avec $\varphi \in \mathcal{D}_{\Omega-K}$, toute forme linéaire sur P peut être réalisée par une application $p \to \langle \chi, p \rangle$ avec $\chi \in \mathcal{K}^{-m}_K$.

Réciproquement, supposons que l'application $\chi \to (p \to \langle \chi, p \rangle)$ envoie \mathscr{K}^{-m}_K sur le dual de P; soit φ une fonction $\in \mathscr{D}_{\Omega}$; tout revient, d'après le corollaire de la proposition 3, à démontrer que $(\psi \to \langle \varphi, \psi \rangle)$ est une forme linéaire continue sur $\mathscr{D}^m_{\Omega - K}(D)$.

Soit $\chi \in \mathcal{K}^{-m}_K$ tel que, pour tout $p \subseteq P$, on ait $\langle \varphi, p \rangle = \langle \chi, p \rangle$; $\psi - \chi$ est une forme linéaire continue sur \mathcal{L}^m_{Ω}/P , donc sur $\mathcal{D}^m_{\Omega}(D)$ (proposition 3), donc sur $\mathcal{D}^m_{\Omega-K}(D)$, d'où le lemme.

Je ne sais pas, contrairement à [2], généraliser ce lemme à des K fermés, mais non compacts (il n'est pas possible ici de raisonner par transformation de Fourier).

Voici maintenant quelques compléments aux théorèmes de [2].

Théorème. 1) Supposons n < 2m, et supposons que P soit l'espace P^k des polynomes de degré $\leq k$ ($0 \leq k \leq m-1$; en particulier, P n'est pas réduit à zéro). Alors:

- a) Si $k \leq m \lfloor \frac{1}{2}n \rfloor 1$, pour que D admette un noyau de Green dans ΩK , il faut et il suffit que K ne soit pas vide.
- b) Si $k=m-\left[\frac{1}{2}n\right]$, pour que D admette un noyau de Green dans $\Omega-K$ il faut et il suffit que K contienne n+1 points affinement indépendants ou ne soit pas $\left[\frac{1}{2}n\right]$ -polaire.
- 2) Soit K un compact contenu dans Ω , et possédant la propriété suivante : Pour toute variété algébrique V de degré $\leq m-1$, il existe une distribution $\in \mathcal{K}^{-m}{}_K$ dont le support n'est pas contenu dans V. Alors, D admet un noyau de Green dans $\Omega-K$.

Démonstration. 1) se démontre comme [2], théorèmes 2 et 5.

2) Il suffit, d'après le lemme précédent, de montrer que, pour tout $p \in P$, il existe $\chi \in \mathcal{K}^{-m}_K$ tel que l'on ait $\langle \chi, p \rangle \neq 0$. Soit alors V la variété des zéros de p; par hypothèse, il existe $\varphi \in \mathcal{K}^{-m}_K$ dont le support n'est pas contenu dans V; il existe donc $\alpha \in \mathcal{D}_{\Omega-V}$ tel que $\langle \varphi, \alpha \rangle \neq 0$; $\beta = \alpha/p$ est encore une fonction $\in \mathcal{D}_{\Omega-V}$, et l'on a donc $\langle \varphi, p\beta \rangle = \langle \beta \varphi, p \rangle \neq 0$. Par suite, $\chi = \beta \varphi$ répond à la question, d'où le théorème.

EXEMPLES DE COMPACTS VÉRIFIANT LA CONDITION 2). 1° Tout compact possédant un point intérieur. 2° Si n < 2m, tout ensemble fini de points n'appartenant à aucune variété algébrique de degré $\leq m-1$ (on sait en effet que, si n < 2m, la masse +1 en un point est dans \mathcal{K}^{-m}).

BIBLIOGRAPHIE

- J. Deny et J. L. Lions, Les espaces du type de Beppo Levi, Ann. Inst. Fourier Grenoble 5 (1955), 305-370.
- L. Hörmander et J. L. Lions, Sur la complétion par rapport à une intégrale de Dirichlet, Math. Scand. 4 (1956), 259-270.
- J. L. Lions, Sur quelques problèmes aux limites relatifs à des opérateurs différentiels elliptiques, Bull. Soc. Math. France. 83 (1955), 225-250.