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ON ONE-SIDED APPROXIMATION
BY TRIGONOMETRICAL POLYNOMIALS

TORD GANELIUS

The problem of one-sided approximation by trigonometrical poly-
nomials to periodic functions with some given regularity properties is
interesting for several applications.

Let S, denote a trigonometrical polynomial of order »—1 at most,
and suppose that the deviation from the approximated function f is
measured in some norm |8, —f|. We then look for the minimum of
I8, =l if the polynomials §,, are restricted by the condition S, —f=0.
In the case of uniform approximation, where the norm is given by
sup|S, —f|, it is trivial that the best one-sided approximation is less
than twice the best approximation without this restriction, but if we
consider the L,-norm more interesting problems arise. In this paper the
problem of the best one-sided trigonometrical approximation in the
L;-norm will be solved for functions belonging to a class H, (r=0,1, ...)
which can be roughly described as consisting of those functions which
have an rth derivative of bounded variation. This result corresponds to
a result given by Freud [2] for the approximation by rational polyno-
mials.

Let B,, denote the function of period 1 which in the interval (0,1)
coincides with the Bernoulli polynomial B,,. In section 1 we first solve
our approximation problem in the special case f(6)=b,,(0)=B,,(6/(2x)).
(For the solution of this problem without the restriction S, >b,,, see
[1, p. 195-199]).

With the aid of this preliminary investigation it is easy to treat the
case feH,. From our result on one-sided approximation to b,, we
finally derive an inequality for periodic functions which is related to a
variant of Bohr’s inequality given by Hérmander [4].

1. The best approximation to b,,. Let b, be the periodic function
which in the interval 0 < 6 <2x is given by

by(0) = 6—7.
Received December 1, 1956.
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Then the function b, is uniquely determined for any integer m >1 by

the conditions 2n

b,’(8) = mb,_,(0), Sbm(ﬂ)de - 0.
0
For m=2, 3 we find the expressions

by(0) = (60 —n)*— a2,
by(6) = (0 —n)*—n*(6—a),

in the interval 0< 0 < 2n, and it is easily seen that
(1.1) bu(0) = —2m! ' k™ cos (kO — ymmn) ,
k=1

The most important property of these functions for our purposes is
the following. If ¢ is a periodic function which is m — 2 times continuously
differentiable, and if g™-? is the integral of a function g,,_;, of bounded
variation, then

2a
(1.2) 229(6) — {9(8)dd = — (m)~

0

byu(6 —B) dgy,—(9)

St ¥

as follows by successive integrations by parts.
We shall also make use of the well-known formula

n-1
(1.3) 2 bala+2ak[n) = n~®-Db (na),
k=0

which easily follows from (1.1).
From now on we shall use the notation |k|] defined by

2n
Bl = (2x)-1 S h(8)|db .

0

LemMa. Let b,, be one of the functions defined above. Then to every
integer n there are trigonometrical polynomials T, , and t,, , of order n—1
such thaot

(1.4) Ton 2 by 2 tyn

and

(1'5) ”Tm,n_bm” =n" Supbm ’
(1.6) b —tm,all = —n™intb, .

These polynomials give the best possible one-sided approximation to b,,.
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In order to prove the lemma we shall construct trigonometrical poly-
nomials with certain interpolatory properties. Afterwards we show that
these are the extremal polynomials.

Let us first suppose that m >2 so that the function b,, has a well-
defined derivative at each point. For our construction we consider the
n points

Op = Op(m,n) = A, ,+2nk/n, k=0,1,...,0-1.

We look for a trigonometrical polynomial of order » — 1 having the same
value and the same derivative as b, at the points 0,. Since there are 2n
conditions and a trigonometrical polynomial of order n—1 has 2r—1
coefficients, this construction is possible only after a proper choice of
4, n.- Now it is well-known (cf. Zygmund [6, p. 49] and section 3
below) that the necessary and sufficient condition for the existence of a
polynomial of order »—1 with the desired interpolatory property is

n—1

kngm’(ok) =0.
By aid of (1.3) we get

n—1

n—1
kE b,'(6r) = mkz(: by-1(Ay, o+ 27k[n)
=0 =

= mn-™-9b,_,(nd m, n) = n™Db (nd m, n) -

If 4, satisfies b,(4,,) =maxb,, (in fact, by this condition 4,, is uniquely
determined), then b4,,'(4,,)=0 so that a suitable choice of 4,, , is

A, =114, .

The interpolating polynomial constructed with this value of 4, , is
denoted T, , and we shall prove that this polynomial has the properties
required in the lemma.

We consider the function

Hm,n(a) = Tm,n(e)_bm(e) s

and we shall first prove that this function is positive for all 6. We know
that there are double zeros at the points 0, =A4,, , + 27k/n, thus at least
2n zeros in a period. If the function H,, , should change its sign, then
there would be more than 2n zeros and since the number of zeros is
even, this assumption implies the existence of at least 2n+ 2 zeros.
But then it follows from Rolle’s theorem that H,, ,™-* has at least 2n + 1
zeros in the open interval (0, 2r). We conclude that there must be at
least 21 —1 zeros of H,, ,™ in this interval and this is impossible, since
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H, ,™ is a trigonometrical polynomial of order » —1 with non-vanishing
constant term,

H, m™0) = T, ,™0)—m! i 0+ 2kx.

Hence we have proved that H,, , does not change its sign. That H,, ,=0
follows by calculation of

2n 2n
\ Ho ()88 = T, ()38 .
0 0

For this purpose we observe that if S, is a trigonometrical polynomial
of order n—1 with constant term sy, then it holds for every ¢ that
2n n—1
(1.7) (27;)—15 S () = sy = n-1 XS, (c+ 2rk/n) .
k=0

0
Thus we find

& n-1 n—1
18) @)\ T @0 = 1 3T, (8) = 07 3 b, (63
k=0 k=0
0
= n"™b,(nd,,, = n™maxb, > 0.

Hence H,, ,(0)=T,, ,(0)—b,,(0)=0. At the same time we have also
proved formula (1.5). That our polynomial gives the best approximation
is also evident from (1.7) and (1.8). For let S, be another polynomial
of order n—1 and satisfying S, —b,, =0, then
2r
180 =bnl = (2) | 8,91

0

n—1 n—1
=n"123"'8,(0,) 2 n '3 b,(0,) = n™maxb, .
=0 k=0

That part of the lemma which concerns 7', ,, for m = 3 is thus proved.
If we take 0,=n"'a,, +2nk/n where b,(a,)=minb,, the interpolating
polynomial will be ¢,, ,, and the proof follows in the same way as above
if m=3.

Also for t, , this construction and proof are valid, and 7', ,, can be
obtained in the same way if we make the formal agreement to put
by'(0)=0.

The only remaining case is m=1. Then 7, , is defined by the follow-
ing conditions if ,(8) =60 —n, 056 <2n,

T, n(27k[n) = by(2nk[n), k=1,2,...,n,
T, (2nk/n) = by'(2nk/n) =1, k=1,2,...,n—1.
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The existence of a polynomial with these properties is evident, and the
application of Rolle’s theorem and the other parts of the proof are
eagier than above. The polynomial ¢, , is defined by

ty, n(27ck[n) = b,(2nk[n), k=0,1,...,n—-1,
ty, 0 (2nk[n) = by'(2nk[n) = 1, k=12 ...,n—1,

or more simply by the observation that

t,n(0) = =Ty (22— 0)
must hold.
For future reference we remark that it follows from the definitions of
7,, and t, , that

(1.9) Ty a(6)—tya(0) = 20F,(6) = 2an~2(sin 36)-2(sin }n6)? .

This is evident since (7, ,—t ,)/2% has double zeros at the points
2nkfn, k=1,2,...,n—1, and equals 1 for § =0, and these properties
characterize the Fejér kernel F, among the trigonometrical polynomials
of order n—1.

It can be proved that the polynomials T, , satisfy the inequality

var (Tm,n_' m) = Kmn-(m_l) ’

where var denotes the variation over a period and K, is a constant
depending on m but not on n. There is a corresponding result for ¢, ,.
Easier to prove is the following somewhat weaker result.

TaEOREM 1. Let b,, be the function defined in section 1. Then to every
natural number n there are trigonometrical polynomials S, , and s, ,,
of order n—1 such that

(1.10) Spn Z by Z 8 n
(1.11) Sm,n—bmll £ Cpun™,  [Iby,—8p,ull = Crpn™
(L12)  var (Sp, n—bp) £ Cpn ™Y, var (b,—8, ,) £ CpnV,
where C,, is a constant depending on m but independent of n.
We shall show that the trigonometrical polynomial of order n—1
Spon = MLy, n*Toa,0—Tin-1,n*by =T, *bpyy)

fulfils the requirements of theorem I. We use the notation f*g for the

convolution, on

f*g = (2n)1 Sf(0~19)g(0)dz9 .
0
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Our basic observation is that
(1'13) Sm,n"bm =m (Tl,n_bl) * (Tm—l,n_bm—l)

since it follows from (1.2) that mb,,_,*b, = —b,,. The formula (1.11)
now follows since

”S n_bm” = m”Tl,n'"bln”Tm—l,n'—bm—l” = Cmn—m'

For the variation we obtain

m,

var (Sm,n-bm) = m”Tm—l,n"’bm-—lu var (Tl,n_bl) ’

and (1.12) is proved if we show that var(T, ,—b,) is bounded indepen-
dently of ». Now (1.9) shows that

Hy,=T,,-b = (T),,-b)+(b—t,,) = 2aF,.

Hence the graph of H, , >0 is situated below the graph of 2aF,. The
proof of the positivity of H, , given above shows that this function can
not have more than one maximum point between two adjacent zeros
(plus one extra maximum in each period on account of the discontinuity
of b;). It follows that varH, , is bounded if varF, is bounded. How-
ever, this is well-known and follows for instance by application of the
L,formulation of Bernstein’s inequality [1, p. 144]. Then it follows from
|IF,ll=n"1 that varF,=2x|F,’| < 2x.

Thus the part of theorem I concerning 8, , is proved. The result for
8m,n follows in the same way by considering

bm—'sm,n = m(Tl,n_bl) * (bm—l_tm-—l,n) .

2. The approximation to functions in H,. A function % of period 2z
is said to belong to H, if » has bounded variation over a period. The
notation heH, where r=1 is an integer, means that h is r—1 times
continuously differentiable and 2~ is the integral of a function %, of
bounded variation. If he H, we put

2n
(2.0) v, = V.0 =\ 1an,) .
0

TrEOREM II. If heH, then to every positive integer n there is a tri-
gonometrical polynomial U, of order n—1 such that
(2.1) U,zh
and
(2-2) ”Un_h” = n'(’”rl)C, Vr ’
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where
Cr = (4n(7‘+ 1)!)_l{supbr+l—infbr+l} = % ’

and this statement ts not true for any smaller value of C,.
In the sequel we write f*dg for the convolution
2n
(2m)\ £(0 - 9)dg(d) .
0
Let k,* and k,~ be the positive and negative variations of #,. Application

of formula (1.2) yields
2n

(r+ 1)!{h(0) _ (2n)-IS k(ﬁ)dﬁ} — —b,,, *dh,
° = —bp *dh b+, * dh,
We define U,, by

2n
U,(0) = (2)1 5 RS +((r + 1))~ tyer, o * dhyt + T,y * by}
0
where T,., , and £,,, , are the polynomials in the lemma. It is easily
seen that U, is a trigonometrical polynomial of order n—1. We now
consider the difference

(2'3) (r+ 1)! {Un(e) _h(o)} = (br+1 - tr+1,'n) * dhr+ + (Tr+1,n "'br+1) * dhr_'

The right side is evidently non-negative and hence (2.1) is satisfied.
Since on on
Sdh,+ - Sdh,— — 17,

0 0

we obtain by integration of (2.3) with respect to 6 and application of
the lemma that

4n? (r+ U, —h|| = R ~r+D V. (supb,,, —infb,.,),

and (2.2) is proved. The inequality C, < Cy=} follows easily from the
properties of b,, given in section 1.
To see that the result is best possible we consider the difference

h(O; &, ) = by.a(B+0)—bpia(x+0) .

Since we can choose 2,.(0; «, B) = (r+ 1) {b,(8+ 0) — by(x + 0)}, it is evident
that heH, and that V,(k)=4x(r+1)!. Suppose now that the trigono-
metrical polynomial S, of order n—1 satisfies §,(0)=A(0; «, #). Then
we find as before that
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2n
IS, =R = (2=)1 S Sp(B)dd = nt 218,,(27110/70) 2 n‘ljh(%zlc/n;oc, B).
! £=0 £=0

Application of formula (1.3) gives
”Sn - h” 2 n=r+D {br+l(nﬁ) - br+l(n0‘)} »
and we can choose « and f so that
I8, =Rl 2 n~2C,. VY, ,

where C, is the constant in theorem II.

By well-known methods (e.g. Jackson [5, p. 13]) this result can be
transferred to the case of approximation by rational polynomials. For
instance, if f is of bounded variation ¥ on the closed interval [ -1, 1],
we consider 4(6) =f(cosf) and find that

var h(0) = 2V .
0s6<2n
Hence he H, and theorem IT can be applied. The approximation poly-
nomials may be supposed to be cosine polynomials and since a cosine
polynomial of order n—1 is a rational polynomial of degree n—1 in
cos 0, we obtain the following corollary of theorem II.

If var;_; 11f="V then to every natural number n there is a polynomial P,
of degree at most n—1 such that P,(x) 2 f(x) for —1<x=1, and
+1
S (P, (x)—f@)}(1 -2}z < nVn .

-1

This is a special case of a theorem given by Freud [2, p. 13], but
with the best possible constant on the right side of the inequality. It
is also possible to derive the general case of Freud’s theorem from
theorem II, but since we cannot add anything to Freud’s result in the
general case, we omit the calculations.

The polynomial U, in theorem II was constructed with the help of the
polynomials given in our lemma. If we use theorem I instead of the
lemma, that is, if we define a polynomial W, by (cf. (2.3))

(1‘ + 1) ! {Wn(e) _h( 0)} = (br+1 "'sr+1,n) * dkr+ + (Sr+1,n_br+1) * dﬁ’r_ s

then the methods we have used in the proof of theorems I and II im-
mediately give

TreoreM III. If heH,, then to every posilive integer n there 18 a tri-
gonometrical polynomial W, of order n—1 such that
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Wn '—Z- h bl
”Wn "‘h” é DT VT n-—(7+1) ,
var(W,—h) £ D, V,.n ",

where D, is a constant depending on r but independent of n, and V,=V (k)
is the number defined by (2.0).

The corresponding theorem for approximation by rational polynomials

is of importance in the proofs of certain tauberian theorems [3].

3. On the coefficients of the extremal polynomials. In the application
in section 4 of the lemma it will be of some interest to have estimates
for the coefficients of the polynomials.

Let us consider 7', ,, and put

n—1
(3.1) Tpu) = 45, + 3 (4, Pcoskd + B, ,Msinko) .
k=1

The constant term has already been calculated ; formula (1.5) implies that
A, = n~™supb,, .

If 1<k<mn it follows from (3.1) and the Fourier series (1.1) for b, that

27
Ay o® + 2(m!)k-mcosmm = n‘ls 008k {T,, u(0)—b,(0)} dB ,
0

and we get
|Am,n(k)l_2(m!)k_m = 2”Tm,n—bm” = 2n_msupbm .
Now our introductory remarks concerning the functions b,, show that

supb,, = $b,(0)m!.
This gives
(3.2) km|A,, .2 = 9m!.

In exactly the same way we find the same bound for B,, ,* and also
for the coefficients a,, ,® and b,, ,% of

n—1
(3.3) tin(0) = G 2@ + 3 (ay, @ coskd + b, ,Psinko) .
=1

We shall not use any explicit expressions for the extremal polyno-
mials, but we make the following remarks.

The trigonometrical polynomial S, which at the points 0, = 6,+ 2xk/n,
k=0,1, ..., n—1, satisfies
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n—1
8.(01) = ¥ Su'(6) = wi, where k%:yk’ =0,

is given (Zygmund [6, p. 49]) by

n—1

(3.4) Sa(0) = 3 {yxFn(0—06;) + yi' Du(6—6,)} .

k=0

Here we have used the notations

n—1
F,(0) = n2(sin40)-2(sin{nd)® = n-2{n + 2 3" (n—r)cosrb
r=1
and w1
D,(0) = 2n~2(sin{nf)2 cot }6 = 2n-2 3 sinrf + n-2sinnf .
r=1

If this formula is applied to our construction of 7', , and ¢,, ,, for m = 2,
one obtains by a tedious calculation after insertion of the Fourier series
(1.1) for b, that

Tm,n(o) = ¢m,n(67 Am,n) and tm,n(e) = Qm,n(o’ am,n) »
where @, , is defined by
D,

m,a(0s %)
n—1 00

= n~"b,(nx) —2(m!) 3 3 (p+1)(r+pn)=™ cos (pnx — jmn+rf) .

r=1 p=—00

(If m=2 the infinite sum is interpreted as lim,_, ., 2% ).
In the case m =1 the calculation is easier. Using the relations

n—1
3 k sin(2nkr/n) = — }n cot(nr/n) ,
k=1

r=1,2,...,n-1,

n—1
3k cos(2nkr/n) = —in,
F=1

we obtain from (3.4), with y, =0, —=n for k=0,1, ..., n—1, with /=1
for k=1,2,---,n—1, and y,"= — (n—1), that the coefficients in ¢, ,, are
given by
(3.5a) —a; ,® = 2an-2(n-k),

’ :<—. =N— 1
(3.5b) —by,,® = 210714 22072 (n — k) cot (wk/n) ,

Elementary inequalities give the bound
(3.5¢) |kby B = bn-t(n—k).

On account of the relation 7', ,(0)= —t, , (27— 6), the coefficients of 7, ,
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have the same absolute values as those of ¢, ,. We also observe that
(1.9) follows from (3.5).

4. An inequality for periodic functions. Let us say that a real func-
tion g with the period 2= belongs to C,(K) if g(0) — K0 is non-increasing.
If m is an integer > 1, the class C,,(K) consists of the periodic functions
that are integrals of order m — 1 of functions in C,(K). For instance if
g™ exists and g™ < K, then geC,(K). A function g belonging to any
of these classes is evidently of bounded variation, and we shall use the
notation

Ye = Op+igp = w71\ g(0)e~**d0

o

for the Fourier coefficients.

If geC, (K) and y,=0 for k| <n, we say that geC, " K).

In [4] Hormander has given an interesting generalization of an in-
equality of Bohr. He obtained his theorem by extending a correspond-
ing result for periodic functions. A result in the periodic case which
was proved by Hormander may be stated as follows [4, p. 38].

If geC, ™ K), then

(4.1) Kn—mintb,, < m!g(0) < Kn—™ supb,, ,

where b, 18 the function defined tn section 1.
The bounds are best possible as the function K(m!)-1n-mb,,(n6) shows.
As an application of our lemma we shall prove the following theorem.

TarorEM 1V. If geC, Y (K), then for every integer n=1,

n—1
(4.2) 9(0) = 9£{Ile+lgkl} + (m!)7t Kn-" supb,, ,
and B
n—1
(4.3) 9(0) 2 —9£ {1Gil +1gel} + (m!)~* Kn—™ infd,, .

In particular, if geC,"(K) we obtain (4.1).
To prove theorem IV we apply formula (1.2). We put
h(6) = g*-D(6) - Kb
and obtain in our previous notations
(4.4) m!g(0) = —b, *dgmDV
= (Tpn—bm) *dh+ KT, ,,—byll— T\, n *dgm=1 .

Math. Scand. 4. 17
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The first term on the right is not positive and the second equals
Kn—™supb,, by the lemma. It remains to estimate |7, ,*dgtm-Y)|.

But T, ,*dg™-1 is obviously a trigonometrical polynomial of order
n—1, and its absolute value is less than the sum of the moduli of the
coefficients. If these coefficients are expressed in terms of the coeffi-
cients 4,, ,* and B, ,® of T,, , and the Fourier coefficients of g, we

easily obtain
n—1

(4'5) |Tm,n * dg(m——l)j -—S- %kz km(IAm,n(k)| + IBm,n(k)I)(]Gk| + |gk[) .
=1

Inserting the bound given in (3.2) and combining (4.4) and (4.5) we get
(4.2). The inequality (4.3) is obtained in the same way by using %, ,
instead of 7', .

In the special case m =1 we apply (3.5) and find that if geC,(K) then

n—1

(4.6) suplg| = 2n£(I—k/n)(|le+|gk|) + 7Kn-t.

This formula is a suitable tool in the proofs of several results concerning
uniform distribution and logarithmic potentials as will be shown in a
forthcoming note.
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