A SPECIAL QUARTIC CONGRUENCE

L. CARLITZ

The solvability of the congruence

(1)
$$x^4 + x^3 + x^2 + x + 1 \equiv 0 \pmod{p},$$

where p is a prime, is covered by a special case of a well known theorem (see for example [2, p. 103]). When $p \equiv 1 \pmod{5}$, the left member of (1) is congruent to the product of four distinct linear factors, when $p \equiv -1 \pmod{5}$, it is congruent to the product of two distinct irreducible quadratics, while when $p \equiv \pm 2 \pmod{5}$ it is irreducible. When p = 5 the left member is congruent to $(x-1)^4$.

It may be of interest to inquire whether like results hold for the reciprocal congruence

(2)
$$x^4 + ax^3 + bx^2 + ax + 1 \equiv 0 \pmod{p},$$

where p is an odd prime. The discussion is somewhat more complicated than that of the quartic congruence [1]

$$(3) x^4 + ax^2 + b \equiv 0 \pmod{p}.$$

For brevity we put

(4)
$$A = a^2 - 4b + 8, \quad B = (b+2)^2 - 4a^2.$$

If $A \equiv c^2 \pmod{p}$, we may easily verify that

(5)
$$((a+c)^2-16)((a-c)^2-16) \equiv 16B \pmod{p},$$

while if $B \equiv e^2$, then

(6)
$$(a^2-2b-4-2e)(a^2-2b-4+2e) \equiv a^2A \pmod{p}.$$

Let f(x) denote the left member of (2). Consider first the factorization

(7)
$$f(x) \equiv (x^2 + ux + 1)(x^2 + vx + 1) \pmod{p}.$$

This implies $u+v\equiv a$, $uv\equiv b-2$,

$$(u-v)^2 \equiv a^2 - 4b + 8 \equiv A$$
,

244 L. CARLITZ

so that it is necessary that A be a quadratic residue of p or be divisible by p. Conversely when $A \equiv c^2$, we get a factorization of the form (7) with

$$u \equiv \frac{1}{2}(a+c), \quad v \equiv \frac{1}{2}(a-c).$$

Also the quadratic factors in (7) have for discriminants

(8)
$$\frac{1}{4}(a+c)^2-4$$
, $\frac{1}{4}(a-c)^2-4$,

respectively. Note that the product of these discriminants satisfies (5). In the next place consider the factorization

(9)
$$f(x) \equiv (x^2 + rx + s)(x^2 + r'x + s^{-1}) \quad (s \equiv 1).$$

This implies

$$r+r'\equiv a, \qquad rr'+s+s^{-1}\equiv b, \qquad r\equiv r's$$

which yields

$$(10) (rr')^2 - (b+2)rr' + a^2 \equiv 0.$$

The discriminant of this quadratic is evidently B, as defined by (4). If $B \equiv e^2$, it follows that

$$(r-r')^2 \equiv a^2-4rr' \equiv a^2-2b-4\pm e;$$

by (6) the product of these two numbers $\equiv a^2A$. Consequently if $a \equiv 0$ and the Legendre symbol (A/p) = -1, it is clear that just one of the numbers $a^2 - 2b - 4 \pm e$ is a quadratic residue. Conversely when the stated conditions are satisfied, we obtain the factorization (9). The case $a \equiv 0$ requires separate treatment but involves no great difficulty.

If f(x) is a product of four linear factors (mod p) then a factorization of the form (7) obtains, and as we have seen, this implies $A \equiv c^2$.

We now state the following results.

THEOREM 1. If (A/p) = (B/p) = -1 then f(x) is irreducible (mod p). If $A \equiv c^2 \equiv 0$ put

(11)
$$c_1 = (a+c)^2 - 16, \quad c_2 = (a-c)^2 - 16.$$

Then

(12)
$$f(x) \equiv \chi_1 \chi_2 \chi_3 \chi_4 \qquad (c_1 R p, c_2 R p) ,$$

(13)
$$f(x) \equiv \chi_1 \chi_2 q \qquad (c_1 R p, c_2 N p) ,$$

(14)
$$f(x) \equiv q_1 q_2 \qquad (c_1 N p, c_2 N p) ,$$

where (in each instance) the χ_i denote distinct linear polynomials, the q_i distinct quadratics.

If
$$(A/p) = -1$$
, $B \equiv e^2 \equiv 0$, then

$$f(x) \equiv q_1 q_2.$$

THEOREM 2. Repeated factors occur only when (i) $A \equiv 0$ or (ii) $A \equiv c^2 \equiv 0$ and either c_1 or $c_2 \equiv 0$.

In case (i)

(16)
$$f(x) \equiv \chi_1^2 \chi_2^2 \qquad (a^2 - 16 Rp),$$

(17)
$$f(x) \equiv q^2$$
 $(a^2 - 16Np)$,

(18)
$$f(x) \equiv \chi^4$$
 $(a^2 - 16 \equiv 0)$.

In case (ii)

(19)
$$f(x) \equiv \chi_1^2 \chi_2 \chi_3 \qquad (c_1 \equiv 0, c_2 Rp),$$

$$(20) f(x) \equiv \chi^2 q (c_1 \equiv 0, c_2 N p)$$

(21)
$$f(x) \equiv (x-1)^2(x+1)^2 \qquad (a \equiv 0, b \equiv -2).$$

The numbers c_1 , c_2 have the same meaning as in (11).

We omit the detailed proofs of these theorems. The following numerical examples illustrate each case.

$$x^4 + x^3 - x^2 + x + 1$$
 irreducible (mod 5),

$$(12)' x^4 - 4x^3 + 3x^2 - 4x + 1 \equiv (x-2)(x-6)(x-3)(x-4) \pmod{11} ,$$

$$(13)' x^{4} + x^{3} - x^{2} + x + 1 \equiv (x - 5)(x - 7)(x^{2} - 4x + 1) \pmod{17},$$

$$(14)' x^4 + x^2 + 1 \equiv (x^2 - x + 1)(x^2 + x + 1)$$
 (mod 5),

$$(15)' x^{4} + x^{3} - x^{2} + x + 1 \equiv (x^{2} + 2x - 2)(x^{2} - x + 3)$$
 (mod 7),

$$(16)' x^4 + 6x^3 + 6x + 1 \equiv (x-2)^2(x-6)^2$$
 (mod 11),

(17)'
$$x^4 + x^3 - x^2 + x + 1 \equiv (x^2 - 6x + 1)^2$$
 (mod 13),
(18') $x^4 + 3x^3 - x^2 + 3x + 1 \equiv (x - 1)^4$ (mod 7),

$$(18') \ x^4 + 3x^3 - x^2 + 3x + 1 \equiv (x-1)^4 \pmod{7},$$

$$(19)' \ x^4 + x^3 + 7x^2 + x + 1 \equiv (x-1)^2 (x-2)(x-6) \pmod{11},$$

$$(20') x^4 + x^3 + 9x^2 + x + 1 \equiv (x - 1)^2(x^2 + 3x + 1) \pmod{13}.$$

We remark that for the congruence (1), A=B=5. Thus irreducibility is implied by (5/p)=-1, while (12), (14) and (18) cover the remaining cases. It is, however, not obvious that the conditions in (12) are equivalent to $p \equiv 1 \pmod{5}$.

Using the well known formulas for the discriminant of a quartic [3, p. 231] we find that the discriminant of the reciprocal quartic

$$f(x) = x^4 + ax^3 + bx^2 + ax + 1$$
 is given by

$$27D = 4(b^2 - 3a^2 + 12)^3 - (54a^2 - 9a^2b + 2b^3 - 72b)^2.$$

A little computation yields the formula

$$(22) d = A^2B.$$

246 L. CARLITZ

In this connection note that when $A \equiv 0$

$$f(x) \equiv (x^2 + \frac{1}{2}ax + 1)^2,$$

while when $B \equiv 0$ we have

$$f(x) \equiv \begin{cases} (x+1)^2 (x^2 + (a-2)x + 1) & (b+2 \equiv 2a) \\ (x-1)^2 (x^2 + (a+2)x + 1) & (b+2 \equiv -2a) \end{cases}.$$

A treatment of the general quartic congruence can be found in a paper by Th. Skolem [4].

REFERENCES

- 1. L. Carlitz, Note on a quartic congruence, Amer. Math. Monthly 63 (1956), 569-571.
- 2. H. J. S. Smith, Collected Mathematical Papers, vol. 1, Oxford, 1894.
- 3. H. Weber, Lehrbuch der Algebra, Bd. 1, zweite Auflage, Braunschweig, 1898.
- Th. Skolem, The general congruence of 4th degree modulo p, p prime. Norsk Mat. Tidsskr. 34 (1952), 73-80.

DUKE UNIVERSITY, DURHAM, N.C., U.S.A.