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ITERATION OF THE “LIN” OPERATION
FOR CONVEX SETS

V. L. KLEE, JR.

For a subset X of a real linear space E, linX will denote the union
of X and the set of all endpoints of line segments in X. Equivalently,
lin X is the set of all points ye E such that y +]0, 1]z< X for some z€Z.
This operation (introduced in [1]) is of special interest for convex sets,
for when X is convex and E finite-dimensional, lin X is the closure of X
in the “Euclidean” topology for ¥ (i.e., the unique topology making E
into a Hausdorff linear space). Iteration of the /in operation for convex
sets was studied by Nikodym [2][3][4][5], whose results are quite de-
finitive but whose proofs are lengthy. The present note supplies a more
concise discussion of the subject. The proofs below of (1)-(3), (A), and
(6) are abridgements of those of Nikodym [4] and others, included here
only for the sake of completeness. However, the proofs of (4) and (5)
are believed to be significantly simpler than those of Nikodym—especially
in the case of (5), to which is devoted his entire paper [5]. Some unsolved
problems are stated at the end of this note.

In the following paragraphs, E will always denote a real linear space
and X a subset of E. Notation and terminology are fairly standard,
with ® denoting the neutral element of E, convX the convex hull of X,
£2 the first uncountable ordinal, I the system of positive integers, R the
real number system, etc. All words of a topological nature will refer to
the Euclidean topology mentioned above.

Let us write 1in°X =X; and having defined lin*X for all ordinals
x<p, let .
linlinf1X  if pB-1 exists,

]jnﬁX = . . . 3 . .
U, ,lin*X if B is a limit ordinal .

We begin by recalling some basic properties of these operations and out-
lining their proofs.
(1) If X ¢s convex, so ts lin*X,
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Proor. It suffices to treat the case « =1. Consider an arbitrary pair
of points p, gelinX and the point v=#p+ (1—t)g, where i€[0, 1]. There
exist y, z such that p+10, 1Jy<X and ¢+1]0, 1]z<X. Then

v + 10, 1](ty+(1—1)2) = X,
whence velin X and the proof is complete.
(2) If X is convex, lin?+1 X =1in? X.

Proor. Consider pelinlin?X, with p+10, 1]Jy<lin?X. For each n
there exists &, < 2 such that p+n~'yelin®»X. Then with 8=sup{«,},1,
we have f<2 and p+]0, 1]ly<linX, since linfX is convex; whence

pelinflX < lin?X
and the proof is complete.

(3) If X is convex and E finite-dimensional, lin X is the closure of X in
the Buclidean topology. Thus lin2X =lin1 X,

Proor. Observe first that X must have an interior point p relative to
the smallest linear variety containing it, and then that ¢ in the closure of
X implies ]p, q]< X.

Now define the order of a set X as the smallest ordinal « for which
lin> X =lin>+1 X. Note that if X is convex, then « £ and lin*X =1lin? X.
In [1], the author showed that X is finite-dimensional if and only if every
convex subset of ¥ is of order 0 or 1. Nikodym’s principal theorems are
as follows:

(4) If X is convex and dim E < Ry, the order of X is < Q.
(5) If dmE 2R, and «x <2, E contains a convex set of order .
(6) If dimE >R, E contains a convex set of order £2.

We begin by establishing the following result, of which (4) is an
immediate corollary.

(4') If X is a convex subset of E and L a (linear) subspace of E with
dim L < 8, there is an ordinal x <2 such that Lnlin*X =L Nlin? X.

Proor oF (4'). If the conclusion fails, a straightforward transfinite
induction produces an uncountable set U of nonlimit ordinals < and a
biunique function f on U to L such that for each fe U, ff €linf X ~ linf-1X.
Since fU is uncountable and L is the union of a countable family of
finite-dimensional subspaces, there are an uncountable subset V of U
and a finite-dimensional subspace M of L such that fV < M. Now since
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M is a separable metric space, fV is separable and there is a countable
subset W of V such that fW is dense in V. Since V is uncountable, then
with d =sup W there exists ye V with y >3+ 1. Since fy is in the closure
of fW, it follows by (3) and (1) that

fy €elinconvfW < linlin’X .

Now y>d+1 and fy¢lin?-1 X ; the resulting contradiction completes the
proof.

The proof of (5) is based on three lemmas, the first of which is used
also in deducing (6) from (5).

(A) Suppose E is the direct sum of a family {L,|acA} of its linear
subspaces, and for each acA, Y, is a subset of L, with ®eY,. Then for

each ordinal B,
' ﬂ linﬂz"asA Ya = Za eAlinﬁ Ya .
The order of X, 4 Y, is sup{order of Y | acA}.

Proor. Each z€E has a unique expression in the form z=2,_,x,,
with always z,€L, and z,=® for all but finitely many ac 4. It is con-
venient to omit the range and index of summation, thus writing X'« for
x, 2Y for X, 4 Y,, etc. Let P, denote the first assertion of (A) for a
given #; P, is easily checked, and it remains to show that if P, is true
for all 8 <y with y > 1, then P, is true. If y—1 exists, a double use of the
inductive hypothesis shows that

linlin»-1 'Y = X linlin»-1Y
whence P, holds. If y is a limit ordinal,
i XY = U, linf XY = U, ZlinfY <« FU;_ linfY = Xlin? Y.

Consider an arbitrary ze2'lin” Y and let F be the finite set of all a4
for which z,+®. For each acF, z,clin®Y, for some f,<y. With
B=sup{f, | acF} we have f <y and

ze XlinfY =1linf X Y.

since z,=®eY, for each acA~F. It follows that P, is valid for all
ordinals g.

Let y denote the order of 2'Y, 8, the order of Y, for each a€A, and
d=sup{d,|acd}. Use of P, and P,,, shows that y<d. If y <9, there
exist (for some acA) §,>y and pelin®*¥,~1in"Y,. With z,=p and
x, =0 for be A ~ {a}, we have z€lin»X'Y ~lin* 2'Y, whence y <y and the
contradiction completes the proof of (A).
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A subset X of £ will be called linearly bounded provided for each line
L in E, the set XN L is contained in some segment.

(B) If X is convex and linearly bounded, and E is finite-dimensional,
then X has compact closure in the Euclidean topology of E.

Proor. Since X must have nonempty interior relative to the smallest
linear variety containing it, we may assume without loss of generality
that @ is interior to X in £. Now if the conclusion fails, there is a se-
quence {z,},.; with ||z,||=1 for each n, such that always [0, n]z,<X.
With y a cluster point of the sequence it follows that the closure of X
contains the ray [0, oo[y, and then, since @ is interior to X, that [0, cc[y < X.
This completes the proof, since it contradicts the assumption that X is
linearly bounded.

The third lemma is

(C) Suppose {L;},1=0,1,2, ..., is a sequence of linear subspaces of B
whose direct sum s B, C; is a linearly bounded nonempty convex subset of
L, for each i€l, and 1’ is the set of all il such that ®eC;. Suppose L,
is a line Ru, {a;};.; 1s a sequence of positive numbers converging to zero
with a;+a; for i%j,

J = conv U (au+C;) and K = conv|J (au+1linC,).

1el tel
Then
K if I’ s finite,
"o,k if I'=1.

If I'=1I and linC;=C; for each i1€l, then linlinJ =linJ.

ProoF. Let us denote by P the set of all sequences A={4;},.; in
[0, o[ such that 4,=0 for all but finitely many ¢€l. For unions and
sums over I, the range and index of summation will often be omitted,
so that convU (au+C)=J, X A= 27 1;, etc. To commence the proof, we
observe that clearly K <linJ, and if I'=1 then ®€linJ. Since linJ is
convex and [0, 11K < conv(Ku{® }), it follows that

[0,1]K < linJ < lin[0, 1]J
when I'=1.

Now suppose either I’ is finite and @={1} or I'=1 and @=[0, 1].
Consider an arbitrary yelin@QJ, with zeE such that y+]0, 1]2<@J.
For each t€]0, 1] there exist A’c P with 24’'e€Q and cieC, for each ie!
such that

y+tz = X (au+c).

There is a sequence {t,},.; in ]0, 1] such that
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lim¢, =0, IlmMXi"=g¢eQ, lim2Zia=meR,

n—>oo n-—>oo n —> o0

and for each 7€l .
limi» =2920.
n—> oo
Defining y, by the conditions that y,cL; fori=0,1,2, ... andy=27y;
we observe that for each t€]0, 1]

Yo+tz = (& Ma)u

while
Yi+tz; = Mct

for each i¢el. Clearly y,=mu. If i€l and A»=0 for arbitrarily large
values of n, it follows that y;=® and 12=0, whence y,€A%linC;. Suppose,
on the other hand, that A/ is different from 0 for all n>m, and let M,
be the linear extension of {y;, 2;}. Then cl*eC;n M, for n>m,; since C;
is linearly bounded it follows from (B) that {ci},.; has a subsequence
convergent to a point ¢?e M;. From (3) it follows that

delinC; andthus y; = 2%%€1%linC;.

Thus we know that
y;€AinC; foreach iel.

Now there is a finite # <1 such that y;=z;=® for all ieI~F. For
teI~(I'UF) we have ®=y,+12;€A!C; and ®¢C;, whence A.=0 for all
te]o, 1].

When I’ is finite it follows that A3=0 for ieI~(I'UF), and that
2 2eQ={1} and X %au=mu=y, Since, further, y;€1?linC; for each

1€l, we have .
yel A(aw+linC) < K,

completing the proof when I’ is finite.
Suppose now that I’ =1. To show that ye[0, 1] K it suffices to produce
ueP such that X u<1, u=2% on F, and (X au)u=mu=y,, for then

yeXulau+linC) < [0, 11K .

(Recall that ®el; for tel’).

For each ucP let hu=2 ua. Let S be the set of all ueP such that
2uszland u=1° on F. We wish to obtain ueS with hu=m, and for
this it suffices to show that AS intersects both ]—oo, m] and [m, oof.
Now since always ;> 0, and lima, =0 as i—oco, there exists je/ ~F with
a;=sup{a;| i€l ~F}. Let the functions &7 be defined as follows:
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£ 2 on F,
o on I~F,
A on F,
n=31-2pl on {j}, thatis, n; =1-25l,
0 on I~(Fu{j}).

It is easy to check that
teS, hREsm, neS, and hy = suphS.
Thus it remains only to show that suphS=m. Let

= 0 for nelF,
"l for nel~F.

If X ply=a,, then X' ;l">0 as n—>oo, and since {a;|icl} is bounded it
follows that 2 ;{"a—0 and X ;A*"a—2';£a, whence k& =m and mehS. It
remains to consider the case 2 1°<a,. Note that

h(E+st™) = 2 3ma + 2 p(lg—in)a — (1-8) 2 plea,

where the first term converges to m, the second to 0, and the third to
(L—8)(m—2 y2%) as n—>cc. Thus the limit of h(&+si”) can be made
arbitrarily close to m by making 1—s close enough to 0, and to show
that supk S =m it suffices to show that for each s€]0, 1],

lim Y (E+st") < 1.

2 (E+8lm) = Ant X (A=) —(1—8) 2 _piin

which converges to o, —(1—8)(0,— 2 z4) < 1. It follows that suphS = m,
and hence that lin[0, 1]J <[0, 1]1K.

The above arguments establish that if I’=1, then linJ =1in[0, 1]J =
[0, 1]K. But if furthermore linC,;=C; for each iel, then J=K and it
follows that

But

linlinJ = lin[0, 11K = lin[0, 1]J = linJ .
The proof of (C) is complete.

In order to carry through the necessary induction, we prove (5) in the
slightly strengthened form

(8") If <8, then every infinite dimensional linear space contains a
convex set X of order « such that lin? X is linearly bounded.
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Proor. The theorem will be proved by transfinite induction, being
evident when « <1. Suppose it has been proved for all <y, where
1<y<{£, and consider an infinite-dimensional linear space E. Clearly
there is a sequence {I,;}, +=0,1, 2, ..., of subspaces of £ whose direct
sum is & such that L, is a line Ru and L, is infinite-dimensional for each
iel. When y is a limit (resp. nonlimit) ordinal let {x,};.; be a non-
decreasing sequence of nonlimit ordinals whose least upper bound is y
(resp. y —1), and for each il let D; be a convex subset of L, such that
D, is of order «;, lin? D, is linearly bounded, and ®€ D, (resp. Pelin*D, ~
lin®1D,). The existence of such D, follows from the inductive hypo-
thesis.

Now when y is a limit ordinal, let Dy={®} and let X=25D, It
follows from (A) that X is of order y, and it is easy to check that X is
convex and lin?X is linearly bounded. It remains to treat the case of
an ordinal y for which y—1 exists. For each i€l, let a;=1/i and for
each « let
X* = conv |J (a;u+1in°D,) .

iel
We will show that X? is of order y and lin®? X0 is linearly bounded, whence
by transfinite induction the proof is complete.

Let N be the set of all ordinals « <y —1 such that lin®* X°=X*. Then
clearly 0e N and we claim y—1eN. For suppose d<y—1 and N is
known to include all ordinals <¢d. Then if § — 1 exists, wehaved —1<y—1
and 1in® X0 = linlin-1 X0 = Lin X1 = X?,
where the second equality is justified by the inductive hypothesis and
the third by lemma (C), for ®€lin’-1D; for only finitely many ¢ since
0—1<y—1. If ¢ is a limit ordinal,

lindxo _ U“<olintxX0 —_ Ua<6X“ = Xd,

where the first equality follows from the induction hypothesis, while the
last equality follows readily from the definition of lin’ and X% We
have established that y—1eN.

From the preceding paragraph we conclude that lin?-!X%=Xv-1,
whence ®¢lin»-1X°, since always a,>0. On the other hand, since
®elin?-1 D, =lin* D, for all D;, we conclude from lemma (C) that

linlin X»-1 = linX»-1 = [0, 1]X»-1,

whence ®elin?+1 X0=1in?X°. It follows that X° is of order y. With
lin? X0=[0, 1] X»-1, it is easy to check that lin?X?° is linearly bounded
and the proof of (5") is complete.
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Observe that (6) is an immediate consequence of (A) and (5), the argu-
ment being essentially the same as that used above when y was a limit
ordinal.

We end the paper by stating some unsolved problems.

ProBLEM. What triples of ordinals «, 8, ¥ can be realized as the
orders of convex sets A, B, and C respectively such that 4 + B=C?

ProBLEM. What triples of ordinals «, 8, y can be realized as the
orders of convex sets 4, B, and C respectively such that conv(AuB)=C?

ProBLEM. Let us say that a convex set X is of level x provided there
exists a convex set C <X having lin*C=X and linfC+X for f<«;
denote by levX the set of all such «. Then levX is a set of ordinals
between 0 and 2. Which subsets of [0, 2] can be attained as levX for
some convex X ? If F is finite-dimensional and X a convex subset of &,
then lev.X ={0, 1} if X is closed and not a linear variety, but otherwise
levX ={0}. If, on the other hand, X is an infinite-dimensional linear
variety, then l1elevX. (See the discussion in [1] of ‘““ubiquitous” convex
sets.) What is levX when X is a linear space of dimension X, ?
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