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A GENERALIZATION OF THE IDEAL THEORY
OF COMMUTATIVE RINGS WITHOUT
FINITENESS ASSUMPTIONS

KARL EGIL AUBERT

Introduction. The object of the present paper is to give a lattice
generalization of Krull’s ideal theory of commutative rings without
finiteness assumptions (see [7]), which in particular includes rings,
distributive lattices and semi-groups as special cases. (Some of our results
have been stated without proofs in [1]; for the non-commutative case see
[2] and [4].) We shall develop the theory in a complete Boolean algebra
over which are defined an operation of multiplication and an operation
of subtraction both subject to a number of conditions. The axiom system
to be given looks at first sight somewhat complicated, but is understand-
able if we keep the subset calculus of a commutative ring in mind. In
short, what we shall do amounts to the same thing as to develop the
Krull theory entirely in terms of subsets, avoiding any reference to the
elements of the original algebraic system. Using the language of Boolean
algebra this means that we do not rely on atomic assumptions. The
fact that we are able to exhibit examples of non-atomic Boolean algebras
satisfying all our conditions promises that the theory may also have
applications essentially different from the standard applications to the
atomic Boolean algebra of all subsets of a given algebraic system.

V. 8. Krishnan [6] has given an entirely different lattice generalization
of Krull’s theory. Krishnan’s theory is rather complicated and it does
not seem to have any essential applications which may not be subsumed
under the present theory. A really simple lattice-theoretic approach to
the Krull theory is still lacking.

In the present paper we have of course not tried to give any exhaustive
account of what results of ideal theory carry over to this general setting.
We believe, however, that the results and proofs of this note should
sufficiently illustrate the general method to the extent that it should
be clear how other similar results could be derived.
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1. Multiplicative lattices over which an operation of subtraction
is defined. We shall not develop any theory of multiplicative lattices
over which a subtraction is defined. We shall content ourselves with
giving some basic definitions concerning such lattices as will be needed
in the sequel.

By a (commutative and associative) multiplicative lattice we mean
a lattice L over which a binary commutative and associative multiplica-
tion is defined such that

a(buc) = abuac.
In addition, in the following we shall suppose that L is complete and
satisfies the unrestricted distributive law
alUJb, = U as,.
tel tel
Further we shall assume that there is defined a binary subtraction in L
which satisfies the unrestricted distributive laws

a-Ub=Ue@-t) ad (Ub)-e=U@-a.

tel tel el iel
L is said to have a greatest element u if x<u for all ze L. Dually, 2 is
a least element of L if z<x for all ze L. These two elements will always
be denoted by u and z, respectively. An element z+42 will be called
regular. An element a€lL is an s-ideal element or shortly an s-ideal if
za<a for all zeL. If a—a<a we shall call a a group element or shortly
a g-element. An element which is at the same time an s-ideal and a
g-element will be called a d-ideal element or shortly a d-ideal. An element
a having the property that a-a<a is called a multiplicatively closed
element or shortly an m-element. By the radical of an element a we under-
stand the element r which represents the union of all elements xeL
such that 2" < a for some positive integer n. An element which coincides
with its radical is said to be half-prime. If a is an arbitrary element from
L we shall denote by (a),, (¢); and (a),, the s-ideal, d-ideal and m-element,
respectively, generated by a. Thus (a), is equal to the intersection of all
the d-ideals containing a.

2. The notion of local closure. The notion of local closure which
we shall now introduce is perhaps the basic tool in the following con-
siderations. In fact, this notion will take care of the non-atomic case
by acting together with the axiom III below as a substitute for atomicity.
As usual we understand by a closure operation C on L a mapping a — (@),
of L into itself such that
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ac @, (@=(a) ad ach

(@), < (®).-

The element a is called C-closed if (a),=a. Further we shall say that
aeL is locally C-closed if for any regular element b<a there exists a
regular element b,<b such that (b,),=a. The mappings a — (a),,
a —~ (a)g and a — (a),, are all closure operations, and we shall in these
cases speak of (local) s-closure, (local) d-closure and (local) m-closure,
respectively. For instance, in usual ideal theory where L is the Boolean
algebra consisting of all subsets of a commutative ring with an identity
element, any s-closed set is locally d-closed. Further the complement of
any half-prime set is locally m-closed. These examples illustrate why
we use the term ‘“local”’. For instance, the complement 4’ of a half-
prime subset 4 of the ring R need not be m-closed “in the large” in the
sense that A'-A'c A’. (As usual, a product 4B of two subsets 4, B
of R means the set of all products ab with ac4 and beB.) But any
subset B of A’ contains a sufficiently small non-void subset B, such that
B,-B,cA'. In fact, we may always take a subset of B consisting of a
single element b, that is, B,={b}. Then (B,),,={b,b% ...,b?, ...} c4’
since A is supposed to be half-prime.

implies

3. The axioms defining a Boolean d-algebra. We shall now give
the complete set of axioms on which the generalized Krull theory will
be based.

We suppose that the basic lattice L is a complete Boolean algebra
over which are defined an operation of multiplication and an operation
of subtraction both being binary and univalued. The multiplication is
assumed to be commutative and associative and we shall also, for the
sake of simplicity, assume the existence of an identity element e satis-
fying ex=2 for all xeL. (This assumption is not essential; it has been
included only in order to avoid some few extra complications occurring
in cases where this identity element is absent.) Further this operation
of multiplication shall satisfy the unrestricted distributive law
I alJb, = U e,

el iel

(the index set I being arbitrary) as well as the following three axioms:

II The set of regular elements of L is closed under multiplication.

III If abne is a regular element of L then there exist regular elements
a,<a and b, b such that a,b,<c.

IV The complement of a half-prime d-ideal of L is locally m-closed.

14*
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The operation of subtraction shall satisfy the following two unrestricted
distributive laws

VvV a-Ub=Uw@-b) and (U b,.) —a=U (;-a).
iel tel 1el tel
Finally, multiplication and subtraction are interrelated by the follow-
ing one-sided distributive law

VI ab-c) < ab—ac.

REmARrkS. From condition IIT it follows that z is an s-ideal. For
supposing az=b=+z2, we get aznb=>b=+z and by condition III there exist
regular elements @, and 2, such that a,<a, 2z, =z and a,2, b, which is
clearly impossible. In the notes [1] and [2] we supposed that the elements
a and b occurring in condition IIT should be regular. This is unnecessary
since this follows from condition III in its present form. For suppose
for instance that b=z; then, since z is an s-ideal, aznc=z contrary to
the assumption that abnc is regular. We note also that since z is an
s-ideal it is in particular an m-element. In the case of rings one makes
the convention that the void set shall be considered as a multiplicatively
closed set. The above remarks show that within the present axiomatic
setting the corresponding fact may be proved.

A Boolean algebra verifying all the above conditions we shall call a
Boolean d-algebra. If we do not take the operation of subtraction into
account and hence omit all the axioms involving this operation we get a
Boolean s-algebra. We note the following obvious proposition which
reduces the construction of Boolean d-algebras to that of Boolean
s-algebras and which is basic for the application of the present theory
to semi-groups.

ProrosITION 1. Any Boolean s-algebra becomes a Boolean d-algebra by
defining a—b as aub.

If A is an algebraic system with a multiplication (and possibly other
operations), then A4-B denotes as usual the set of all products ab with
acA<N and beB<. If the given multiplication is not everywhere
defined in 9 it is natural to put A-B= ® whenever none of the products
ab are defined.

The following proposition will now clarify the meaning of the axioms
IT and III.

ProrosiTioN 2. If L 4s the Boolean algebra of all subsets of an algebraic
system N with a multiplication (and possibly other operations), then axiom
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IT is equivalent to the fact that the multiplication is everywhere defined in
A, and 111 is equivalent to the fact that the multiplication is single-valued.

Proor: The first part obviously follows from the above convention.
Further, the assumption that 4, B and C are subsets of U such that
A-BnC=+® means that if the multiplication is single-valued there exist
acA and be B such that abeC and we may put 4,={a}, B,={b}in order
to get A,- B, <C. Conversely, if multiplication is not single-valued there
exist two elements a, be such that ab={c} UC where C is a non-void
subset of . Then {a}-{b}n{c}+®, but there exist no non-void subsets
A,<{a} and B, < {b} such that 4,-B,<{c}.

4. The existence of non-atomic Boolean d-algebras. It is of
course essential for the interest of the present theory that we are able
to exhibit examples of non-atomic Boolean d-algebras (both in the com-
mutative and in the non-commutative case; for the definition of atomicity
see Section 5). For if a Boolean d-algebra were atomic our development
avoiding reference to atoms would be unnecessarily complicated. The
use of atoms would have made possible practically the same treatment
as in the case of rings. In particular, our technique of using the concept
of “local closure” could have been dispensed with. On the other hand, the
existence of non-atomic Boolean d-algebras also promises that the theory
may have applications different from the standard application to the
Boolean algebra of all subsets of a given algebraic system — like ring,
distributive lattice or semi-group.

Let S denote the multiplicative semi-group of strictly positive real
numbers <1, that is, §=]0, I[. Under the usual topology of the real
line, S is a topological semi-group. It is a well-known fact that the family
of all open sets of S having the property that they are equal to the in-
terior of their closure, forms a complete Boolean algebra ¥ under set-
inclusion. These are the so-called regular open sets. This Boolean algebra
B is obviously non-atomic. In the finite case, the operation of inter-
section in ¥ is the usual set-theoretic intersection while the union 4 vB
of two sets in B is the set (4 UB)* representing the smallest regular
open set containing the set-theoretic union 4 uB. Denoting the usual
complex multiplication of two subsets 4 and B of S by A-B we define
a multiplication in B by putting 4 c B=(4-B)*. We shall now prove
that this makes ¥ a (non-atomic) Boolean s-algebra, and hence also a
Boolean d-algebra, by using the union operation as the operation of sub-
traction (Proposition 1).

We first show that the mapping 4 — 4* is related to complex
multiplication in § by the following
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LemMA. The closure operation A — A* defined within the lattice of open
sets in S satisfies A-B*< (A- B)*.

Proor. Denoting the topological closure of 4 by 4 we have, by the
continuity of multiplication, 4-B<A-B. Noting that 4*< 4 we get
A-B*<A-BcA-B. Since the complex product of an open set with an
arbitrary set in a topological group is open, 4 - B* will be open, and since,
by definition, (4-B)* is the maximal open set in A-B we must have
A-B*< (4-B)*. (Here we consider S as imbedded in the multiplicative
topological group of all strictly positive real numbers.)

ProposITION 3. B is a commutative and non-atomic Boolean s-algebra.

Proor. In order to show that the multiplication defined in % is
completely distributive with respect to the union operation in 8 we use
the above lemma remarking first that the inclusion

V 4¢B;, < 4-V B,
el tel

is obvious. The reverse inclusion is obtained as follows,

* * *
4.V B, = (A(U B,-)*) < ((A- U Bi)*) - (U AB,.) cV 4-B,.
tel tel iel tel el

Axiom IT is trivially verified. In order to show that III is satisfied we
may argue as follows. Let 4, B and C be sets in B such that 4 BnC+ ®.
Then also 4-BnC 4 ®; for otherwise A-B<C” (C' denoting the comple-
ment of C in 8) and thus also 4o B=(4-B)*<(’ since (' is closed.
Hence there are two elements ae 4 and be B such that abeC. Since C
is open it follows from the continuity of the multiplication in S that
there exist two sufficiently small open (non-void) intervals 4, <4 and
B, = B such that 4,-B,<C; and since (B we also have 4, B, =C.
The fact that 4, and B, are open intervals in S and thus belong to B
completes the proof of III. That IV is also verified is clear since the
s-ideals in S are just the open intervals ]0, a[ with 0 <a<1 and ]0, 1]
is the only one among these s-ideals which is half-prime.

In the case of a non-commutative multiplication we may construct
an example of a non-atomic Boolean d-algebra in a trivial fashion. Take
any non-atomic Boolean algebra and define multiplication as follows:
ab=> whenever a#z and zb=2. We omit the routine check that this
really defines a Boolean s-algebra. We have thus proved the following

THEOREM 1. There exist both commutative and mon-commutative non-
atomic Boolean d-algebras.
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In the non-commutative case we were able to define a multiplication
intrinsically using only the Boolean operations of a given abstract
Boolean algebra. (The above non-commutative multiplication is essen-
tially identical with one of the 16 possible binary Boolean operations.)
This cannot be done in the commutative case, due to the following

ProrositioN 4. In a Boolean algebra B there exists no commutative
binary Boolean operation which makes B a Boolean s-algebra by taking
this operation as multiplication.

This is easily checked by going through the various possible com-
mutative, binary Boolean operations. Some of these operations, like
intersection and union, are distributive with respect to union but fail
to satisfy Il or IIIL

5. On the independence of the axioms. Before entering our
subject matter proper we shall make some remarks on the logical in-
dependence of the system of axioms given in the preceding section. Since
in any case we shall deal with a Boolean algebra satisfying the distributive
laws I, V and VI, we shall here principally be interested in the inde-
pendence of the conditions II, III and IV relative to the remaining set
of axioms. We first remark that condition III is satisfied in every ideal
Boolean algebra (a, multiplicative lattice L is said to be an ideal lattice
if a-b=anb is always fulfilled in L) since an ideal Boolean algebra can
be residuated in one way only, namely by taking the operation of inter-
section as multiplication. For in this case abnc+2 (z always denotes
the least element of L) is equivalent to anbnc=+z and we may simply
put @, =b; =anbnc in order to satisfy III. But condition II is obviously
not satisfied by this interpretation of the multiplication. Since the rest
of the axioms are satisfied by identifying the operation of subtraction
with the union operation in L, we have thus shown the independence
of condition II relative to the remaining set of axioms. In order to show
that III cannot be deduced from the other postulates we may identify
both the operation of subtraction and the operation of multiplication
with the union operation in L. In this case all the conditions except III
are satisfied. III is not satisfied; for instance, for a regular element ¢
different from the greatest element of L the complement ¢’ of ¢ as well
as (¢’Uc)nc are regular; but there exist no regular elements ¢, S¢’ and
¢, ¢ such that ¢;Uc,<c.

A Boolean algebra is called atomic if any of its elements except z may
be written as a union of atoms. A multiplicative Boolean algebra is
called regular if condition II is satisfied. Finally L is called a-closed if
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the set of atoms of L is closed under the operation of multiplication, i.e.,
if the product of two atoms is an atom. In connection with the question
of the logical independence of conditions I-VI we shall establish some
simple connections between the three concepts just defined and conditions
IL, IIT and IV. The proof of the following propositions is obvious and
may be omitted.

ProrosiTiOoN 5. A multiplicative Boolean algebra which is atomic and
a-closed is regular.

But conversely, atomicity and regularity do not imply that L is a-closed
(take for instance the Boolean algebra L where the product of any two
elements is the greatest element of L). It is when one tries to add a
convenient condition in order to obtain this converse result that III
enters. Specifically we have the following

ProrosiTioN 6. If a multiplicative Boolean algebra is atomic, regular
and satisfies condition 111, then ¢t is a-closed.

Proor. Let a and b be atoms and put
a/b = U C.i )
el
the ¢; being atoms. Now, taking one of these atoms, say c,;, we have
abne;=c,+2z. Hence, according to III there exist regular elements a,
and b, such that a,b,<¢;, a,<a and b, <b. But as a, b and ¢, are atoms
we must have a=a,, b=b, and ab=c,.

ProrosrrioN 7. If a multiplicative Boolean algebra is atomic and
a-closed then the conditions I11 and IV are satisfied.

Proor. Suppose that III were not satisfied. If e, b and abnc are
suitable regular elements of L, then a,b, ¢ ¢ for all regular e, and b, such
that a;<a and b,<b. In particular we may put a,=a* and b,=5b*
where a* and b* are atoms. But in this case a*b* & ¢ is equivalent to
a*b*<c’ (¢’ denoting the complement of ¢). Now, writing a and b as

unions of atoms,
a=Ue*r and b=Uo~,
a*Ca b*C b
we geb
ab=Jarb* ¢
a*Ca
b*ch

(See Lemma 4 of the next section.) Thus abnc=z contradicting the
assumption that abnc is regular.
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Let further r be a half prime element and @ be a regular element con-
tained in ». We then have a*<r for all n. By atomicity let = be an
atom contained in a. Since by a-closure the powers ™ are all atoms,
x® ¢ r means that x» <’ for all n, that is

@p=Uer =,

nz1

which proves the local m-closure of 7'.

CoROLLARY. In an atomic multiplicative Boolean algebra condition 1V
18 always verified. More precisely IV is implied by atomicity, I, 11 and II1.

Proor. By Proposition 6 atomicity together with II and III imply
that L is a-closed. Then the corollary follows immediately from Propo-
sition 7.

6. Lemmas. In this section we shall prove some simple lemmas
which will be constantly used in the following. We suppose that all
conditions listed in Section 3 are satisfied.

LeMMA 1. acb and c=d implies ac<bd.
LEMMA 2. anb=z is equivalent to a<b' and to b<a'.

The proofs of these two lemmas are obvious.

Lemma 3. Any complete Boolean algebra satisfies the infinite distributive
laws

anUbi=U(anb,-) and (Uai)n(Ub,): U a;nb;.

tel tel 1el jed (@, J)elIxJ
For proof see [5, p. 165].

LemMa 4. If the operation o satisfies the infinite distributive laws

aclUb;=Uacb, and (Ub,)oa:Ub’-oa,
jedJ

tel iel jedJ
then also
(U“z‘)"(u bj) = U a;°ob;.
iel Jjed @, NHelIxd
Proor.
(Ua):(Us)=U(a-Ub)=UUamet;= U aos,.
el jeJ tel jed tel jed @, j)eIxJ

The expression x;a —2,a— . .. —,a may be made meaningful, i.e. yield

an element in L, in a certain number of ways by putting parentheses.
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For a given n-tuple (z,x,, ..., ,)eL” this will give ¢(n) (not necessarily
distinct) elements of L. With respect to a certain ordering of these ¢(n)
elements we shall denote the ith element by

iza.
The following lemma now gives the explicit form of (a),.
Lemma 5. The d-ideal (a); has the explicit form
@q = U 20

where the union is taken over all finite n-tuples (xy, ..., x,)eL™ with
n = 1 and over all 1.

Proor. When (a); is defined in this way we obviously have that
a< (a); and also that (a); is contained in every d-ideal containing a.
We therefore only have to prove that so defined (@), really forms a d-ideal.

Putting .
U Sya=15
we have for arbitrary ceL

eb=clU Yiza=UecSizac U Siecrach.
Thus b is an s-ideal. That b is a g-element follows from
b-b = (U Zixa-a)—(U kal“) =U (Zi%’“‘zﬂc”l“) .
due to Lemma 4.
LeMMA 6. a(b); < (ab)g.
Proor.
a)g=alU ieb=Ua a0 = U 32ab = (abd),.
LemMa 7. (a)z(b); S (ab),.
Proor. This is an immediate corollary of Lemma 6.

LeMMa 8. The m-element generated by a is equal to the unton
m = U a™ .
nz1

Proor. Obviously acm and m< (a),,. We therefore only have to
show that m is m-closed. This follows from

m-m=Ua"-Ua1’=Ua‘1§m.

nz1 p21 'EY
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Lemma 9. If the operation o defined in L satisfies the distributive law
a°Ubi = Ua°bi:
el tel
then it also satisfies the one-sided distributive law
aonbi < na°bi'
el 1el
Proor. In fact, it is enough to assume the homogeneity condition
@ S b-—>coa S cob; for then
ao° n b‘i S ao bi
el
for all ¢ and therefore also
ao nbi < naObi.
el iel
LemMma 10. Any intersection of d-ideals is a d-ideal.
Proor. If a=M;_;q; is the given intersection then a is an s-ideal, since
ba =b[)a; nbaisa
el tel
(by Lemma 9). Further, since a —a<a; for all ¢ because of a<a,, we
have a—a =M, ;a;=a which shows that a is also a g-element.

Lemma 11. If {a;};c; 18 a family of d-ideals being simply ordered with
respect to inclusion in L, then the union

a=Ua,;

is again a d-ideal. el

Proor. Follows immediately from

bU“i=Ubai§Uai=“

tel tel iel
and
a—a= U (@-a)<a,
@, Helxl

since a;—a;<a,; or <aj.

7. The notion of a prime ideal element in a Boolean s-algebra.
Apparently, there is a lot of different ways of generalizing the usual
ideal-theoretic notions of a prime ideal and a primary ideal to a Boolean
s-algebra. In the present section we shall only treat the notion of
primeness. We shall show that in a Boolean s-algebra essentially one
concept of primeness may be defined.
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The different possibilities of generalization of the usual notion of a
prime ideal in ring theory arise from the fact that the relations xeca
and «¢a each have (at least) two possible generalizations to a mul-
tiplicative Boolean algebra. fea may be translated into b<a or the
weaker condition that anb be regular. Similarly f¢a may be translated
into b¢a or b<a’. We shall say that a is in the relation P,, P,, P or P,
to p and write aP;p (i=1,2,3,4) if acp, anp=+z, aEp and a<p’, re-
spectively. Making the convention that 7, j and % can only take values
from the index sets {1, 2}, {3, 4} and {1, 2}, respectively, we may give
the general

DerintTION 1. The s-ideal element p is said to be P, ; ,-prime if for
regular a and b, abP;p and aP;p imply bP;, p.

This definition includes 8 apparently different notions of primeness.
That most of these notions are only apparently different is obvious.
But we shall here prove the following strong result.

ProrosiTioN 8. If L is a Boolean s-algebra all these eight notions of
primeness are equivalent apart from P, 5 \-primeness, P, 3 o-primeness and
P, 4 1-primeness which we shall exclude from consideration because these
properties may only be verified by the greatest element of L.

Proo¥. P, 4, P,,,: If acp’ and abcp we cannot have b p.
For from bnp’+2z we should get a(bnp’)<ab<p which is impossible
because of P, 4 ,.

P, 41— Py, ,: Suppose adp and absp. We then have bnp=+z, for
bcp’ would according to P, ,, give a<p in contradiction with the
assumption.

Pyso—Pysq: Let agp and absp. If bnp'+z we should have
a(bnp’)cab<sp contradicting P, 5 ,.

Py31>Py,,: Ifacp’ and abn p+2 for regular @ and b, then accord-
ing to condition III there exist regular elements a,, b; such that a,<a,
b;cb and a,b,=p. P, , then gives b,cp, that is bnp=+-=z.

Py, P, , ,: Obvious.

These five implications prove the equivalence of P, ,,, P; 41, Py 3,
P, 3, and P, , ,-primeness. That P, ; ,-primeness and P, , ,-primeness
are impossible except for the greatest element of L is evident. In order
to see that P, , ,-primeness is also impossible except for the greatest
element of L we remark that p is supposed (by definition) to be an s-ideal.
If now p=+z is not the greatest element of L we have pn (pup’)p’ +2
and pUp'¢p but p'np==z which proves that p is not P, 3 ,-prime.
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In the following we shall use the formulation given by P, , ,-primeness
which coincides with the usual definition of a prime ideal element in a
general multiplicative lattice. In this case we shall use the term s-prime
(element) for short. If in addition p is a g-element we shall call p a
d-prime (element).

As in the usual ideal theory of rings we may also here give a useful
characterization of d-ideals which are not d-primes.

LemMa 12. The d-ideal a 1s non-d-prime if and only if there exist d-ideals
b and ¢ both containing a properly and for which bc<a.

Proor. The “if”’-part is obvious. If conversely a is not a d-prime
there exist two elements b, and ¢, such that b;<%a, ¢c;$a and b,¢,<a.
Then b,=aub, and c,=auc, both contain a properly, and b,c,<a. By
Lemma 7,
(boa(ca)g S (baCe)g < (@)g = @

The lemma is therefore proved by choosing b= (b,); and c=(c,)4.

8. d-primes and m-elements. In this and the following sections
we shall show that the methods used by Krull carry over to the type of
Boolean algebras defined in Section 3.

ProrosiTiON 9. The d-ideal p is a d-prime if and only if the complement
of p is an m-element.

Proor. Suppose that p is a d-prime different from z and ». (That
the proposition is verified for p=2z or p=u follows immediately from
axiom II and the fact that z is an m-element.) If now p’ were not an
m-element we should have p"p’<p’ or p'p'Np=+z. Condition IIT then
implies the existence of regular elements a, b such that a<p’, b=p’ and
ab < p. This contradicts the fact that p is a d-prime. Conversely, let p’ be
an m-element. If there exist elements a and b which are not contained
in p and such that ab<p, then anp’ and bnp’ are regular and
(@anp’)bnp’)sp’'p’ <p’. Since according to II the product (anp’)(bnp’)
is a regular element this contradicts (anp’)(bnp’)sab<sp.

ProposITION 10. If m is an m-element then a maximal d-ideal contained
n m' is a d-prime.

Proor. Let p be a maximal d-ideal contained in m’ (the existence
proofs are gathered in Section 11). If p were not a d-prime, then accord-
ing to Lemma 12 there would exist d-ideals @ and b properly containing
p such that ab<p. But p is maximal in m’, and hence anm and bnm
will be regular elements for which
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(1) (@anm)(bnm) = m

since m is an m-element. On the other hand,

(2) (@anm)bnm) cab<pcm.

(1) and (2) contradict the regularity of (anm)(bnm) (Condition II).

Prorosition 11. Let a be a d-ideal and m be a maximal m-element
contained tn the complement of a. If p is a maximal d-ideal containing
a and betng contained tn m’, then p ts a mintmal d-prime containing a.

Proor. That p is a d-prime follows from Proposition 10 and that p
is minimal follows from Proposition 9. In fact it follows that p=m';
for if p were properly contained in m’, then p’ would be an m-element
contained in ¢’ and properly containing m, against the maximality of m.

9. Radicals and weak primary d-ideals. By the definition in Sec-
tion 1 the radical of a d-ideal a is the element » which is the union
of all elements for which a finite power is contained in a. Since L is
supposed to be complete, the radical always exists and is uniquely deter-
mined by a. But the radical itself need not have the property that a
finite power of it is contained in a.

ProrosiTioN 12. The radical of the d-ideal a is a d-ideal which contains
a and which is equal to the union of all d-ideals for which a finite power
18 contained in a.

Proor. The last assertion follows from the fact that if 2* < a then also
(®)g"<=a. For (z);"< (x")q< (a)g=a follows by repeated applications of
Lemma 7. We may therefore write the radical thus,

r= U (@)g .
anCa

That » is an s-ideal follows from

br=Ub@yc U @y=r.

z"Ca a"Ca
Further,
r—r = U (@a- @)
xnCa
y"Ca

Here (z);— (¥)3< (*UYy)4, and if 2*<a and y™<a then

[(a:)d_. (y)d]rwm—l < ((IL‘ §] y)d)m-m—l c [(:E U y)n+m—1]a .

Expanding the last expression we get
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(@wugyymt), = ( U xiyi) Sa.
nffnil d

This obviously proves that r—rc<r

LeEmMMA 13. Let ¢ be a regular element contained in the radical r of the
d-ideal a. Then there exists a regular element ¢y =c such that c,"<a for
some n.

Proor. Since

cnUw= Ucnx=c#z,
anCa xnCa
the element ¢; =xnc¢ must be regular for at least one x. From ¢, =« and
2™ <a we get ¢, Sa as desired.
The following lemma, similar to the preceding one, will be needed
later in connection with the isolated weak primary components.

LemMA 14. Let p be a minimal d-prime containing the regular d-ideal a.
Further, let the element q be defined as the union of all elements x such that
xp, S a for a suttable regular element p, <p’. Then, if c=q and ¢ is regular,
¢ will contain a regular element x having this property.

Proor. Since c<gq, ¢ must have a regular intersection with at least
one z. If ¢,=cn is regular, ¢, will have the desired property.

DeriniTION 2. The d-ideal q is said to be a weak primary d-ideal if for
regular elements a, b such that ab<=q and adq we always have a regular
by b such that b,"<q for some n.

In usual commutative ideal theory there is a distinction between strong
and weak primary ideals. The ideal q is weak primary if for elements
a, be R such that abeq and a¢q we have breq for some n. On the other
hand, q is strong primary if for ideals a, b = R such that ab<=q and a¢q
we have b” < q for some n. A strong primary ideal is always weak pri-
mary, but the converse statement is not generally valid. If R satisfies
the ascending chain condition the two concepts will coincide. It is the
concept of a strong primary ideal that lends itself most naturally to lattice
translation, since this concept is defined entirely in terms of ideals without
using the ring elements. For the purpose of the Krull theory, where no
chain condition is assumed, the above definition which constitutes an
analogue to the definition of a weak primary ideal seems, however, to
be more useful.

THEOREM 2. The radical of a weak primary d-ideal is a d-prime.
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Proor. Let ¢ be a weak primary d-ideal and r its radical. Suppose
that r were not a d-prime. Then there exist elements a, b such that
ab<sr, atrand bdr, that is, @, =anr" and b, =bnr’ are regular elements
such that a,b, =r. According to Lemma 13 there exists a regular c<a, b,
such that c®*<gq for some n. By condition IIT we further have regular
elements a, < a, and b, < b, such that a,b,<c. Thus a,?-b,"<=c*<q. Let
us suppose that n is the least exponent for which (a,b,)" is contained in g.
Then a,"1-b,""14¢q, and therefore also bya,"~1-b,"-1¢ ¢ since ¢ is weak
primary and no regular b;<b, can satisfy b;m<q for any m since
bycb,cb,=r'. The same argument applied to the product

@y (baa," 1-by" 1) = ay" by < ¢

gives the desired contradiction since bya,*~1-b,"-1d¢¢ and no regular
element a;<a, can satisfy a,m <q for any m since a;<Sa,<a,<=r'.

THEOREM 3. The radical r of the d-ideal a is identical with the inter-
sectton of all the (minimal) d-primes containing a.

Proor. According to Lemma 13,
rep="4.

acp

Let us suppose that » were properly contained in %, that is, that Ans’
were regular. By condition IV, 7' is locally m-closed and hence there
exists a regular element cchn7’ such that the m-element
m = U c®
nz1
generated by c is contained in »’. According to Proposition 10, a maximal
d-ideal containing a and being contained in m’ is a d-prime which does
not contain h. This establishes the desired contradiction.

As the notions of primeness and m-closure correspond to each other
in the sense of Proposition 9, we shall now see that the notions of half-
primeness and local m-closure correspond to each other in the sense of
the following

ProrosiTION 13. A d-ideal p is half-prime if and only if its complement
18 locally m-closed.

Proor. The “only if”’-part of the proposition coincides with condition
IV, hence there is nothing to prove in this case. Conversely, if p’ is
locally m-closed then p must be half-prime. For if ¢&p, then cnp’ is
regular and contains an element ¢, such that ¢,” < p’ for all n. Therefore,
since ¢,"<c” and ¢,"Np’ is regular for all n, the element c*np’ is also



GENERALIZATION OF THE IDEAL THEORY OF COMMUTATIVE RINGS 225

regular for all », and hence c* cannot be contained in p for any integer
n=1.

We shall now prove the main theorem concerning the isolated weak
primary components.

THEOREM 4. To every minimal d-prime p containing the d-ideal a there
corresponds a uniquely determined minimal weak primary d-ideal q which
contains a and has p as its radical. This element q is called the isolated
weak primary component of a which belongs to p.

Proor. Though somewhat more complicated, the proof of this theorem
proceeds along the same lines as the corresponding theorem in the usual
Krull theory. In fact, we shall see that the weak primary d-ideal in
question is equal to the union of all elements b, for which there exists
an element s;$p such that b;s;<a, that is,

191 =

(3) ¢=Ub.
bjsica
sinp’+2z

(In case p is equal to the greatest element of L we put ¢=a.) Because of

(0)a(89)g S (b;8)g € (@) = a

we may, as in the definition of the radical, give the definition of ¢ entirely
in terms of d-ideals. If convenient we shall therefore assume that all the
elements b; occurring in the union (3) are d-ideals. That ¢ will be a

d-ideal follows from
iq = Utbig Ubi=q

and
w4=Ub—Ub—Ubb) Ub=g.
bisiCa b,s]Ca bpspCa
sinp’ =2 sjinp’ =2 8pnp’ =2

The last inclusion follows from

(b;—bj)s;8; < bys;8;—b;8,8; S a—a S a.

Since s;8; ¢ p this shows that b; —b; is one of the elements b, entering in
the definition of g. We then prove that p is actually the radical r of g,
which is the union of all ¢ such that ¢®<q for some positive integer p.
Obviously » = p. Let us assume that r is properly contained in p. Then
the element ' np will be regular, and according to the condition of local
m-closure this element will contain a regular element ¢ such that c*<r'np
for all p=1. Now let us consider the element
= U (cur,
cz21

Math. Scand. 4. 15
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which is obviously m-closed. We shall prove that m is contained in 7',
If mnrs+2z we have (cup’)’nr=+z for a certain o, that is,

(cPuc™ip’u...up)nr * z;

hence "
TP Nr £ 2

for a certain 7 with 1< 7<¢—1. We remark that we may here suppose
p’ to be regular; for if p’ were not regular, then a=g¢ according to the
convention made above. Therefore,in this case it is immediate, aceording
to Theorem 3, that p is the radical of ¢ since p is the only d-prime con-
taining ¢q. Thus, by condition ITI we have a regular ¢, =¢®* and a regular

p, <P such that
apLSr.

Lemma 13 now proves the existence of a regular element d<c, p, such
that d° < ¢ for some p. But then, again according to ITI, we have a regular
¢, <c, and a regular p, <p, such that ¢,p,=d and therefore

(4) ’ptcdicyg.

By Lemma 14, (4) implies the existence of a regular e<c,?p,? and a
regular s<p’ such that

(5) es<a.

Again III implies the existence of a regular ¢; =c¢,? and a regular p, < p,°
such that cgp;<e. This together with (5) gives cyp;sSesca. Since
pss<p’ we shall have c;cg<r contradicting c;Sc,2<c,?<S (™) sy
This shows that m properly contains p’ and is contained in »’. Proposition
10 (together with an existence result to be proved later) therefore proves
that there exists a d-prime containing » (and therefore ¢) and which is
properly contained in p. This contradicts the assumption that p is a
minimal d-prime containing a. The hypothesis that r is properly con-
tained in p must therefore be false and p is the radical of g.

We next prove that g is weak primary, i.e., that if for regular 6 and ¢
we have be =g and b ¢ ¢, then enp 2. Condition ITI together with Lemma
14 imply that there exist regular elements b, =bngq’ and ¢, ¢ such that

(6) bieyp, S a

for a suitable regular p, =p’. (If p is the greatest element of L, in which
case p’ is not regular, then cnp is of course always regular and there
is nothing to prove in this case.) If now ¢np were not regular we should
have ¢; cc< p’ and thus ¢, p; = p’, since p’ is an m-element. By the defin-
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ing property of g, (6) therefore gives b, =¢ contradicting b,=bng'=¢’,
b, being regular.

We finally prove that ¢ is contained in any weak primary d-ideal
containing @ and having p as its radical. Suppose there exists an-
other weak primary d-ideal ¢g* containing a, with radical p and such
that ¢ ¢ ¢g*. Then there exists by Lemma 14 a regular ¢; =¢*'ngq such that
g1 P1Sa<q* for a suitable regular p, =p’. (As before, there is nothing
to prove if p"=2.) Since ¢ and ¢* are supposed to have the same radical
this is in contradiction with the fact that ¢* is weak primary.

Theorem 4 is now completely proved.

10. Further results. Another definition of the radical. The results
of the preceding section correspond to that part of the Krull theory
which is formulated as the Struktursatz in [8, p. 9]. We give no
exposition of the further results of the Krull theory here; we only re-
mark that in our setting most of them may be obtained by use of the
same techniques as in the preceding sections. We might for instance
use the following definition: An element b is said to be related to the
d-ideal a if there exists an element s Ca’ such that bs<a. Here we should
not define unrelated as an element which is not related to a, but by the
stronger property that none of its regular ‘subelements’ is related to a.
Then one may prove that any minimal d-prime containing a is related
to a. We omit further proofs because they are often rather lengthy
and offer no particular new interest. We also remark that a few of the
other results of the Krull theory seem to be rather difficult to obtain
in the present setting without introducing further axioms. For instance,
it seems difficult to prove a simple result like this: Any maximal d-ideal
related to the d-ideal @ contains a. But we shall not enter into these
questions, especially because there exists another very satisfactory
generalization of all these results by means of -ideals. See [3]and a forth-
coming paper by the author. In Section 5 we did not say anything about
the independence of condition IV with respect to the remaining body of
axioms. In fact we have not been able to construct any example showing
this independence. The corollary of Proposition 7 shows that such an
example must be non-atomic. In any case axiom IV is necessary for the
derivation of Theorem 3 when the present definition of the radical is
used. But we can easily change the definition of the radical to the effect
that by this new definition condition IV will be fulfilled by itself, whence
it may be discarded. This definition runs as follows: An element b shall
belong to the big radical of a if for any regular 6,<b we have b,"Na =z
for a certain n. It follows that a is identical with its big radical if and

15+
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only if the complement of a is locally m-closed so that IV need no longer
be postulated. The two radical notions coincide in the atomic case.

11. Existence proofs. We first give a direct proof (without using
m-elements) of the fact that any d-prime p* containing the d-ideal a
contains a minimal d-prime containing . We formulate this as

PRrOPOSITION 14. Let p* be a d-prime containing the d-ideal a. Then the
partially ordered set P consisting of all d-primes p satisfying a < p < p* has
at least one minimal element.

Proor. The proof is carried out in the standard fashion by means of
Zorn’s lemma. We only have to show that P is inductive with respect
to the relation 2, i.e., that if § is a simply ordered subset of P then S
has a lower bound in P. Indeed, a lower bound for S is given by the d-ideal

po=[p.

peS
Obviously py2a. That p, is a d-ideal follows from Lemma 10. If p,
were not a d-prime we should have, by Lemma 12, two d-ideals a, b which
contain p, properly, and such that ab<p, Then agp, and b$ p, for
some P, p,€S8. Since S is simply ordered we may for instance suppose
P, Sp;. We then have a$p,, bEp, and ab<=p,=p, contradicting the
fact that p, is a d-prime.

ProrosiTioN 15. If a is a d-ideal and m ts an m-element contained in a’,
then there exists a maximal d-ideal containing a and being contained in m'.

Proor. Zorn’s lemma may here be applied to the partially ordered
set @ consisting of all d-ideals b satisfying acb<m’. Lemma 11 shows

that @ is inductive.
Finally, we prove the following existence statement which was also

used.

ProposiTION 16. If a 18 a d-ideal and m* an m-element contained in a’,
then there exists a maximal m-element contained in a' and containing m*.

Proor. We here consider the partially ordered set R consisting of all
m-elements m satisfying m*<mca’. If S={m;},.; is a simply ordered
subset of R we only need show that the element

me = U my
iel

belongs to R. Obviously my<a’ and mymy<m, follows from



GENERALIZATION OF THE IDEAL THEORY OF COMMUTATIVE RINGS 229

momo = U m; - Umj: U mym; < U my, = mq
tel 1el @, pelxl kel
(S being simply ordered we have m;m;<m; or =m;). In particular,
choosing m* =z we have that in any case maximal m-elements are con-
tained in a'.

12. Applications. Finally we make some remarks on the range of
applications of the present theory.

1. Rings. It is clear that the Boolean algebra consisting of all subsets
of a commutative ring R will satisfy the conditions I-VII when the
product 4-B and the difference 4 — B of two subsets 4, B of R are de-
fined as the subsets consisting respectively of all the products a-b and
all the differences a —b with ac 4 and be B. Then the usual ideal theory
of Krull [7] will be subsumed under the present theory.

2. Ringoids. More generally B may be taken to be a commutative
and associative ringoid (in the sense of [5, p. 203]. A ringoid is an alge-
braic system with one multiplicative operation being distributive with
respect to each member of a family of additive operations. The additive
operations are subject to no restriction at all.

3. Distributive lattices. Apart from rings the most important example
of a ringoid is perhaps that of a distributive lattice. In this case we get
as a corollary of Theorem 3 the well-known result that any lattice ideal
in a distributive lattice may be written as an intersection of prime ideals.
This result is basic in the representation theory for distributive lattices
and Boolean algebras.

4. Semi-groups. It is interesting to note that all the conditions I-VI
are satisfied if we identify the subtraction operation with the union
operation in L. Due to this fact the preceding theory will also automat-
ically apply to the ideal theory of commutative semi-groups. For by this
identification any subset of the given semi-group will be closed under
subtraction since ¢ —a=a Ua=a for all ae L. In fact, this procedure has
the same effect as letting the operation of subtraction disappear.
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