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ON NEWTONIAN VECTOR FUNCTIONS

MAXWELL O. READE

1. Let the vector
V=V@) = VX, X, %3) = Xqi+ X,pj+ Xk

be defined in a domain (non-null connected open set) D. If ¥ has con-
tinuous partial derivatives of the first order in D, then V is said to be a
Newtonian vector [4] provided its curl and divergence both vanish iden-
tically in D:

0X, 0°X, 0X, 0X, 0X, 9X,
1V = V= |—"0w-—2)% R . 22 TN e =0
cur v ( 0z, 0x4 ) o ( ory 0x, )j * ( or, 0%, ) 7

oX, 09X, 20X,

—_— 0.
0r, O0x, Oxg

divv=V-V=
It follows that every Newtonian vector is a harmonic vector.

We can consider (1) and (2) to be analogues of the Cauchy-Riemann
equations. The analogy has been carried further by Fulton and Rainich,
who obtained a ‘“Cauchy integral formula’ [4] and by Beckenbach, who
obtained theorems of Morera type [1].

In this note we carry the analogy a little further by obtaining, for
Newtonian vectors, analogues of results due to Fédoroff and the present
author for analytic functions of one complex variable [3, 6]. We shall
prove in detail only a special case of a more general result; the latter will
be stated in full at the end of this note.

2. TeEOREM 1. Let V(x) be continuous in a domain D. Then a neces-
sary and sujfficient condition that V(z) be a Newtonian vector is that there
exist a fized null sequence {r,} of positive numbers with the property that

) 1
3) lim — SSS (@) V(z) do(@) = 0,
b=tk oot S
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(4) lim - SSS (@—,) x V() do(x) = 0

r
b=>oo Tk |le—wk| <7

both hold for every sequence {x;} in D that converges to a point of D.

N=xcessity. If V(x) is a Newtonian vector, then, as remarked above,
V(z) has harmonic components. Hence if we expand each component of
V(x) in a series of spherical harmonics, say about the point ,, and if we
make use of the orthogonality relations that exist among these har-
monics, then we obtain the well-known relations

4
(5) (§§ @-20-v@) avi) = T v v,
lz—zo| =7
©) (@ —y) x V(@) do(a) = % 737 x Viay),
Ia:—a:.| <7 15

which hold for all sufficiently small . Now (3) and (4) are trivial con-
sequences of (1), (2), (5) and (6), for any null sequence {r,}.

SurriciENcy. Now let {r,} be a fixed null sequence of positive numbers
such that (3) and (4) hold for all sequences {z,} of points of D that
converge to a point of D. The functions

1
) 7o) = = (| @-v-vw av),
|z —y| <
1
(®) W) = 5 (|| v xve de
le—~y| = 7k

are continuous on a certain subset D;, of D. Moreover, we can show that
lim,_,  fi(¥)=0 and lim,_,  W,(y)=0 uniformly on compact subsets of
D. For, if the convergence were not uniform on say the compact set K
in D, then there would exist a positive real number §, and sequences
'} {yi’} of points of K such that |fy(y,')|=max, g|fi(y) and
[Wy(y,')| =max, x| W;(y)| and such that

(9) liminf|f,(y;)] = 6 > 0,  lim inf|W,(y,") = 6 > 0

k—>o —> 0
both hold. Since K is compact, we may assume that the sequences
{ox'}, {y;''} converge to points of K, and hence of D. But (9) contradicts
(3) and (4). Hence the limits (3) and (4) are uniform limits for «;, on
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compact subsets of D. We can replace those equations by

(10) lim fi(y) = 0, lLim Wy(y) = 0,

k—> o0 k—> o0

which must hold uniformly on compact subsets of D.
We now assume that V(z) has continuous partial derivatives of the
first order in D. If we use the finite Taylor expansion

oV ) 4 ov
(11) V() = V(?/)'f‘(xl'“?h)a—x— + (X2 —Y2) Fyn + (953“3/3)87 +o(lz—yl)
1 2 3

in (7) and (8), then we obtain

47
o) = =V V@) +o(1),
(12) in
Wily) = 1 V x V() +e(l).

From (10) and (12) we obtain (1) and (2).
Suppose now that V(x) is given to be only continuous in D. Then the
mean-value functions [2]

V(")(x) =

o 13§ v it

ly—z| <e

have continuous partial derivatives of the first order in an open subset
D, of D; moreover, it follows from (10) that V@(z) satisfies (3) and (4)
uniformly on compact subsets of D,. Hence by the preceding argument,
it follows that V¢(x) is a (harmonic) Newtonian vector in D,. But
v@(z) 2 V(z) on compact subsets of D, as ¢ — 0, so it follows that V(z)
must satisfy the equations (1) and (2) in D. This completes the proof.

3. If we examine the proof of Theorem 1, we see that a key to the proof
is the pair of relations (5) and (6); essential use is made of the fact that
the ellipsoid of inertia of the sphere is again a sphere. This last remark
leads to a further generalization of Fédoroff’s result, as follows.

Let {I',} denote a sequence of volumes homeomorphic to |z| <1 and
let 6, and |I',| denote the diameter and volume of I',. We say that
{I',} is a null sequence of volumes if and only if for each ¢>0 there
exists m(e) such that each I', lies in || <¢ for all n>m(e). We also say
that the sequence {I',} has the property @ if and only if there is a positive
constant a such that the following relations hold for all I',:
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SSS x, dv(x) = SSS 2, dv(®) =0, k+m, km=1,273,

Iy Iy

Zsir) s ({22 v = ({22 dvi@) = {({ o dote) s asry.

Iy In Ip

If Fn(x)E[x+y|yeI’n] denotes a translate of I',, then we have the
following result.

THEOREM 2. Let V(x) be continuous in a domain D. Then a necessary
and sufficient condition that V(z) be a Newtonian vector is that there exist
a null sequence of volumes, with property Q, such that

SSS (@ —,) V(z) dv(z) = 0,

Iy (xn)

(1§ @20 x ¥@) dvie) = 0

In(xn)

1
lim ———
n—>o0 0n 2 | 1|

1
lim
n—>°°6nzlrnl

hold for each sequence {x,} converging to a point in D.

ProoF. A proof can be given that parallels the proof given above for
Theorem 1. We omit the proof.

4. Tt is clear that the preceding results have analogues in n dimensions,
n2=2. The author has given detailed proofs in [7] for the case n=2.

The basic idea, that of establishing the uniform limit (10) under the
given hypothesis, is due to Miiller [5].
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