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ON AN INEQUALITY FOR
THE HYPERBOLIC MEASURE AND ITS APPLICATIONS
IN THE THEORY OF FUNCTIONS

VILHELM JORGENSEN

Introduction. Let D be a simply or multiply connected domain with
more than two boundary points in the extended z-plane (i.e. the plane
including the point z=o00), and let D* be the universal covering surface
of D. A classical theorem states that there is a one-one conformal map-
ping of D* onto the circle [w| <1. This paper contributes to the general
deformation theory for such mappings. In order to state the main result
as simply as possible, we take as a standard domain not the unit circle but
the strip S: |v| < }n (w=u+1v, w and v real). Let z; and 2, be finite and
belong to D, and let the analytic function z=f(w) map S onto D* and
take the values 2, and z, for two real w-values u,; and u,. If D is multiply
connected there is an infinity of such mappings with distinct values of
the difference u,—wu,, but as is well known, the ratio |f'(u,)/f’(us)| will
be the same for all of them. We give bounds for this ratio in terms of
the geometrical configuration in the z-plane. If ¥ and f are the greatest
and smallest values of |(z—2,)/(z—2,)| for z on the boundary of D, our

result is
2 1 (u)/f'(ug)| = F2,

the signs of equality holding only for F=f.

If we let the two points 2, and 2, coincide, we get a relation that can
be used to estimate the change in curvature under the conformal map-
ping of a curve. It is a simple general property of conformal mapping
that if a function w=g(z) is regular for 2=z, and |g’(z,)| =1, then the
curvatures of all (regular) curves tangent to a given line in z =2, increase
by the same amount under the transformation w=g(z). We give bounds
for this amount in terms of the geometrical configuration in D.

In these introductory remarks we have referred to a standard domain
in the w-plane, but in general we use instead the usual non-Euclidean
geometry in D. One may say that the object of our study is the interplay
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of Euclidean and non-Euclidean measure in an arbitrary domain. In
this study the partial differential equation
o 0o?

1 Au =4e, A=_—4+—, z2=2x+1%
() 0x? + oy? +y
plays an important part; our main results are theorems on the solutions

of this equation.
If the domain D is simply connected, some of the results are known.

In particular we mention a theorem by J. L. Ullman [5, Theorem 2]
and a related one by J. L. Walsh [6, the concluding remark]. In § 3 we
give new, simple proofs of these theorems.

§ 1. The partial differential equation (1).

1.1, Transformation of the solutions. The property of (1) important
for the theory of functions may be stated in this way: If the domain D,
is mapped conformally onto a domain D, by an analytic function
z=f(w) and if %(z) is a solution of (1) in D, then the function

u(f(w)) +log|f ()]

is a solution of the corresponding equation in D,. For the proof we refer
to [3, p. 51]. We may use this to find the behaviour of a solution for
z-»oco when z=ococ is an inner point of D,. Putting w==z", we see that

w(w™1) +log|w2|

defines a solution in a domain that includes the point w=0. This shows

that we have
(2) u(z) = u(z)—2logr ,

where %,(z) tends to a limit for |z] =7 — co.

1.2. A lemma. Let u and u, be two solutions of (1), bounded above and
satisfying the inequality >
in the circle r < R. Then there is a positive constant k such that the inequality

u—1uy, > k(R—r)
holds in the circle.

Proor. Putting u—u,=v, we have
(3) Av = 4(e —e?1) = 4e™(e¥ —1) < Kv

for a suitable positive constant K.
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We now introduce the elementary function
v, = c((Rfr)"—1).

We are going to show that, by choosing suitable values of » and ¢, we
can make »; a minorant of v in the annulus R <r < R. Differentiating,
we find

%v—l = —cnRrr—n-1
r
and
1d/ dv, n? n?
Avl = ;d— (f'———) = cn?Rry-n-2 = ”IW > UI—RE .

We now take n>RK? and get for 0<r<R

(4) dvy > Ko, .

The positive constant ¢ is taken so small that
v—v; > 0

on the circle r=34R. For r - R we have liminf(v—v,)20 since v is
positive and v, tends to zero. It follows from this that if the continuous
function v —wv, were to take negative values in }R <r < R, it would have
a negative minimum. But v—v, is positive at any minimum point, for
(3) and (4) give Kw—0) > Aw—uy),
and at a minimum we have A(v—v,;) 2 0.
Consequently the inequality v = v, holds for 4R <r < R. The statement
now follows since we have dv,/dr <0 for r=R and »>0 for 0<r<}R.
From the Lemma we draw this conclusion: If two non identical solu-
tions u and u, of (1) in @ domatn D satisfy the inequality

u

v

Uq 5

then the sign of equality will hold in no finite point of D.

Proo¥. Let z, be a point in which we have u(z,) > u,(2,). We draw the
greatest circle about z; in the interior of which we have w>wu;. This
circle must pass through a boundary point of D, for otherwise there
would be a zero z; of the difference »—wu, on the periphery and,
according to the Lemma, grad(u(z;)—u,(2;)) would not be zero; but
then u —u, would take negative values in the vicinity of 2,, and a contra-
diction is obtained. Now it follows in the usual way that any finite point
in D can be connected to z, by a chain of circles in which we have u > u,.

8*
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1.3. The hyperbolic measure. The word hyperbolic is abbreviated h.
In a domain D with more than two boundary points (h. domain) there
exist infinitely many solutions of (1); this was proved by Picard [4].
One of these, u,, has the extremal property that at any finite point of D
it takes a greater value than any other solution in D. It also takes a
greater value at the point than any other solution on D*. For by a
conformal mapping all the solutions on D* can be transformed into the
solutions in the unit circle |w| <1, and inequalities between the values
at a particular point of D* are not disturbed by this transformation.
In |Jw| <1 the extremal solution is —log (1 —|w|?) (see [1, p. 360]), and it
is well known that this solution transformed to D* is single-valued in
D (see later, section 2.1). The function

Az) = €@

is called the h. measure in . We shall make use of the following property
of A: When z tends to a finite boundary point of D, A tends to infinity. If
D has only three boundary points, this follows from the properties of the
elliptic modular function (for an elementary proof see [1]), and from the
extremal property it follows that the addition of more boundary points
increases the values of A.

1.4. The fundamental inequality. THEOREM 1. If the h. domain D
contains the half-plane y<0 and if z belongs to D and to the half-plane
y > 0, then we have
(5) Az) 2 A(2),

the sign of equality holding only when the boundary of D belongs entirely to
the real axis.

Proor. We may suppose z= oo to be an interior point of D; otherwise
we can achieve this by applying the transformation w= —(z—a)-! for a
real a in D, under which the two terms in (5) are multiplied by the same
positive factor. First we consider the case when D has no boundary
points on the real axis. The part of D that belongs to the half-plane
y >0 is called D,. In D, we consider the function

P(2) = ug(2) —%(2) -

Tt is zero on the real axis, and it tends to zero for z -~ o according to (2)
and to infinity when z tends to a boundary point of D. It follows that
if the continuous function ¢(z) were to take negative values in D,, it
would have a negative minimum. At a minimum point z, we have,
however, Agp(z,) 2 0 and from
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Agp(z) = 4(e2uo(z)_e2uo(2))

we get @(z,) =2 0. Hence ¢(z) 2 0in D,. This is also true if D has boundary
points on the real axis; for, on applying a translation ¢z (¢ > 0), we obtain
from what has already been proved

Ug(z) Z (2 —2ie),

and e - 0 gives the statement.

If the boundary of D is entirely on the real axis, uy(z)=wu,(Z) follows
from the extremal property of u,. If D has at least one boundary point
in ¥ >0, the two functions u,(2) and u,(Z) are not identical in D, and,
according to 1.2, the sign of equality can hold at no point of D;. This
concludes the proof.

Letting z tend to a point of D on the real axis, we find d¢p/oy =0 for
y=0, and, according to the Lemma in 1.2, equality holds only if the
boundary of D is entirely on the real axis. We state this in a slightly
more general form as a theorem:

THEOREM 2. Let E be a h. domain and | a straight line such that one
of the open half-planes bounded by 1 belongs to E and the other contains ai
least one boundary point of E. Then for any point z, on | and belonging
to E the vector grad A(z,) is different from zero and points to that side of I on
which boundary points are situated.

§ 2. Applications.
2.1. Hyperbolic geometry. The usual non-Euclidean geometry in the
unit circle |w| <1 is defined by the metric

®) do = 1L 1l

1—Jw®
do remains invariant when the circle is mapped conformally onto itself.
By means of a conformal mapping of |w| <1 onto D* the metric (6) is
transferred to D* in such a way that do is the same for corresponding
elements dz and dw. Thus do is invariant under conformal mappings
of D* onto itself. Putting do = pu|dz| we find

p = |dw/dz|2,, ,

and this is the h. measure on D* according to 1.1 and 1.3. If D* is
mapped conformally onto itself in such a way that a point P goes over
into a point P; with the same coordinate 2, then neither do nor |dz| will
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change and hence pz has the same value at P and P,. Consequently u
is equal to A, the h. measure in D, and we have the formula

(7) do = Aldz|
for any h. domain.

In the model of the h. plane in |w| <1 the geodesics are the ares of
circles orthogonal to the fundamental circle |w|=1. Any two points in
|w| <1 can be connected by one such arc, and this is the curve of shortest
h. length connecting the points. On D* the geodesics have the same
property; but if D is multiply connected, there is an infinity of geodesics
connecting any two points in . Among these there is always one with
minimal h. length, and this is a h. shortest curve connecting the points.
This is seen at once when D* is mapped onto the circle as the points in
|w| <1 that correspond to a point in D do not accumulate in the interior
of the circle.

Let D contain the half-plane y <O0; then this half-plane is a h. convex
domain. At first it follows from Theorem 1 that if, for a negative con-
stant %, a curve c in D lies in the half-plane y > k, then the h. length of ¢
is greater than the h. length of the curve symmetric to ¢ with respect
to the line y=k. Now let z, =z, +1iy, and z, =2, +ty,, where 0>y, 2y,,
be joined by a curve a of minimal h. length. Then y <y, at all points
on a; otherwise a h. shorter curve joining 2, to z, would be obtained by
reflecting an arc of @ contained in the half-plane y >y, in the line y=y;.

It now follows that the curve of minimal h. length joining two points
in <0 is uniquely determined, for as two such curves would belong to
y <0, they would correspond to two geodesics connecting the same two
points on D*,

We now prove Ullman’s theorem generalised to multiply connected
domains.

THEOREM 3. Let the h. domain D contain the half-plane y <0 and have
at least one boundary point in the half-plane y > 0. Then a curve ¢, joining
the points xz, (on the real axis) and z, (y,>0) in D is h. longer than the h.
shortest curve cy from x, to 2.

Proor. The part of ¢, situated in y >0 is reflected in the line y=0
and the rest of the curve is retained. In this way we obtain a curve
connecting &, and Z,, and this curve is h. shorter than ¢,, but not than c,.

If in Theorem 3 we take z, close to x; and transfer to a sheet of D*,
it is seen that the geodesic which is the locus of points having the same
h. distance from the points P(z,) and P(z,) on D* has, in the sheet con-
sidered, no points that are projected into the half-plane y <0. Letting
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P(z,) tend to P(x,), it is seen that the geodesic through P(z,) that touches
the line ! corresponding to the real axis, is a h. supporting line of /. This
is in accordance with the convexity property just proved.

2.2. Hyperbolic curvature. For a curve in D having a Euclidean cur-
vature we can also define a h. curvature with the following characteristic
properties (see [2, p. 22]): If the domain is the unit circle and the
point its centre, the two curvatures are equal; and the h. curvature is
invariant under conformal mappings. It is seen that the lines of h.
curvature zero are the h. geodesics. As usual we fix the sign of the
curvature in accordance with the direction chosen on the tangent; the
angle from this direction to the direction of the normal is + }=.

For the Euclidean curvature x, and the h. curvature »; of a curve ¢
at a point of an arbitrary h. domain D we are going to prove the for-
mula

(8) ) He = j.%h'l‘ .

If we apply a similarity to D, x, remains invariant, while the other three
quantities are divided by the ratio of the similarity. It follows that we
may suppose A=1. The point may be 2=0 and the tangent the z-axis.
We map D* conformally onto |w|<1 by a function z=f(w) having
at w=0 the development
z=f(w) = wtaw+....
For ¢ we have a parametric representation of the form

x =t+o(t)

Yy = 3 02+0(t?) .
Putting a,=ox,+ ¢, we find
X — o0g®2 + 2050y + ooy + . . .
v = y—Bo2®— 205y + By + . ..

u

I

which gives for the image c, of the curve ¢
u = t+o(t)

v = }(x,—2B2)t% +0(t2) .

This shows that we have
(9) He = "h+2132-
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For A=24(z) we have

d d
Mz) =|£—’l(1_|w|2)~1 - ,di:l(1+;w|2+...).

From .

dw

| = 1= 202207+ ...

we get
Mz) = 1 =200+ 28,y + . ..
which gives for z=0
dlo
P) 54 = ‘Zj =26,.
Y Y
From (9) and (10) the formula (8) follows.

We see that, at the point 2, on the line ! considered in Theorem 2,
the h. curvature of [ is different from zero; the curvature vector is
directed to that side of I which contains no boundary points. This is in
accordance with the fact that this half-plane is a h. convex domain.

(10)

2.3. The general form of the theorems. Hitherto we have considered
a half-plane free from boundary points; we may instead take an arbitrary
circle. Theorem 1 then takes the form:

THEOREM 4. Let G be a h. domain, and let z, and z, be finite and in G.
Then we have for z on the boundary of G
z—2 f
X ’
2—2a k

2 < Mz,) <
the signs of equality holding only when |(z—z,)[(z—2,)| has the same value

z2— zl
= = ma
Mzy)
for all boundary points z.

(11)

2—22

Proor. We put max|(z—z,)/(z—2,)]=F and consider the circle
c: |(z—2,)/(z—2,)| =F. Let 2, be a point on ¢ and in G. We use the trans-
formation

(12) w = (z-2)

which tranforms @ into a domain G, and ¢ into a straight line I. The
points w, and w, corresponding to z, and z, are symmetrical with respect
to I, and there are no boundary points on the side of ! containing w,.
Theorem 1 then gives

(13) Ap(w) = Ay(wy)

the sign of equality holding only when the boundary of G is on ¢. From
(7) and (12) we get
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d
ho = 24|

2
w

’ = lzlz_zolz

and (13) gives
A(ze) 25— 29| S A(21)|2 —2|?

which is the right side of (11) because z, is on c.

The left side of (11) follows from the right side by interchanging z,
and z,.

From Theorem 2 we get

THEOREM 5. Let 2, be finite and in a k. domain G, and let the vector ¢
define a direction through z,. The greatest and smallest curvatures of circles
touching t in z, and having boundary points of G on the periphery are called
K and k. Then we have

(14) ks “* <K,

the signs of equality holding only if k=K.

Proor. We prove the inequality to the left; the one to the right is
then obtained by reversing the direction of {. We may suppose z,=0
and ¢ on the positive real axis. If we apply the transformation

w = (2714 3ki)L,

the circle with curvature £ will go over into the line v=0, and the domain
@, will contain the half-plane v <0. At the point w=0 that corresponds
to z=0 we have by Theorem 2

alogl,,,>0
ow

the sign of equality holding only when the two circles coincide. At
w=0 the expression

0logi, © dz
= — log | —
ov ov (loglz+ 8| dw |)
reduces to
0logl,
-k
oy
since we have
dz
().,
dw w=0

and
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dz

= |1 —}hwi|~2 = (14kv+ }k%0% + }h%u?)-1 .
dw

This concludes the proof.
The geometrical meaning of the theorem is clear from formula (8). If

in particular we consider a h. geodesic, we find

E<x, £ K.

e =

This means that the Euclidean circle of curvature at any point of a h.
geodesic divides the boundary or contains the whole boundary on the peri-
phery. For simply connected domains this theorem is due to Walsh.

§ 3. Simply connected domain.

3.1. Theorems of Ullman and Walsh. Applying the reflection prin-
ciple of 1.4 to a harmonic function, we get simple proofs of the theorems
of Ullman and Walsh. Hyperbolic geometry is not used.

TaEOREM (Ullman). Let the simply connected h. domain D, containing
the point z=oco, have boundary points in the half-plane y>0, but not in
y<0, and let the schlicht function w=f(z) map D conformally onto the
circle |w| <1 in such a way that z = oo corresponds to w=0. Then, if z in D
18 finite and belongs to the half-plane y >0, we have

If @) > f@) .

Proor. For large values of |z|=r we may suppose f(z) to have the
development
J@) = a2z +az2+ ...,

a, being real and positive. The part of D belonging to the half-plane
>0 is an open point set D, consisting of one or more domains. In D,
we consider the harmonic function

f@
Putting =7 cosf, y=r sin6 we find
(15) u = 2rta,;"'Ima,sinf+ 3’ b, r-"sinng ,
n=2

and it is seen that 4 — 0 for r - co. For z tending to a point on the
real axis we also have lim =0, and for z tending to any other boundary
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point the limit is positive. It follows that x>0 holds in D,, and this
completes the proof. As an immediate consequence (15) gives

(16) Ima, > 0.

THEOREM (Walsh). Let y be a closed analyiic Jordan curve in the circle
lw| <1 passing through the point w=0. If there exists a schlicht analytic
Junction in |w| <1 that maps y onto a circle, then the curvature vector
of v at w=0 is different from zero and points into the interior of the
curve.

Proor. We may suppose that y touches the u-axis at w=0 and that
the direction of the v-axis points into the interior of the curve at that
point. We shall prove, then, that the centre of curvature corresponding
to the point w=0 is on the positive v-axis.

According to the hypothesis there is a function

(17) z=gw) = wlt(x+if)+aw+...,

regular and schlicht in 0 < |w| <1 and mapping the interior of y onto the
half-plane y < 0. The inverse function has the development

w =214 (a+1f)272+...
for large values of |2|, and from (16) we get the inequality
(18) pg>0.

Instead of (17) we introduce the function

(19) 2 =wl+(x+1p)
that maps the circle
) 1
281 26

onto the line y=0. Comparing (17) and (19) it is seen that (19) must
map y onto a curve having y=0 as an asymptote. But this shows that
(20) is the circle of curvature of y at w=0. As the centre of (20) is on
the positive v-axis, the theorem is proved.

It should be remarked that y may have points on the circle |w|=1,
but must not consist of a diameter and a semicircle; only in this case
the curvature vanishes at w=0.
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