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ON AN ABSOLUTE CONSTANT
PERTAINING TO CAUCHY’S “PRINCIPAL MODULI”
IN BOUNDED POWER SERIES

AUREL WINTNER

1. Let f(z) be a function which is regular within the unit circle and
satisfies the inequality

(1) If(z)) <1 for |z] < 1.
For |z| <1, let another regular function, g(z), be defined by placing

(2) g<z)=§lcnlzn it f(2)=4f}0n2"-

It follows from (1) by Parseval’s relation (first applied, in this context,
by Gutzmer; cf. [2, p. 8]) that

o0
(3) e <1, hence |[c,| <1,
V]

and it is also known that
(4) lonl < 2(1—l¢gf) i n >0

(this fact goes back to Carathéodory, and is connected with the Cara-
théodory-Toeplitz criterion for functions which are harmonic and posi-
tive in the unit circle; for a simple direct proof of (4), due to Bohr, cf.
[2, p. 28]).
It is clear from (1) that

sup |z/f(2)] 2 1

2l <1
(the sup can be «) and that, in view of the example f(z) =2, the lower
bound 1 cannot be improved to any greater absolute constant. In what
follows, the corresponding question will be considered for the case in
which f(z) is replaced by g(z). The result will be that

sup |z/g(z)| > 1/3

Izl <1
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holds by virtue of (1), and that 1/3 is the best absolute constant here.
The question arises in connection with Cauchy’s ‘“‘principal moduli’’;
cf. [1] and, for further considerations, [3].

2. It is clear from (1) and (2) that, if f(z)+ const. and O<r<r+h<1,

0 < max |f(z)] £ max |9(z)| = g(r) < g(r+h) < g(1),
o[zl <r 0s|zl=r
where g(1) is defined to be g(1—0)=|cy|+|c;|+ - .., hence g(l)=cc is
allowed. It is also clear that there exists a finite min,_, _,g(r)/r, where
g(r)/r at r=0 is meant to be oo or |c,| according as |cy| >0 or |cs|=0.
Obviously, there exists at least one ry=7y(g) satisfying
(5) min g(r)[r = g(ro)fre ,

0sr=1

where 0<7y,< 1. It will be seen below that this

(6) 7o is unique unless g(r)/r = const. or g¢(0) = 0.
It will be concluded from (4) that
(7 min g(r)/r < 3
0=r=1

holds by virtue of (1) alone, and (6) will be convenient when proving
that the 3 of (7) cannot be replaced by any smaller absolute constant.
In the latter regard, it will be essential to use functions for which the
ro=7o(¢g) occurring in (5) is within the open interval

(8) 0<ryg<1.
For, if (8) does not hold, then
9) min g(r)fr < 3+ (< 3) if ry=1
0=sr=1
and
(10) min g(r)fr <1 if r,=0.
osrs1

3. Consider first the case (8). In this case, it follows from (5) that the
derivative of g(r)/r must vanish at r=r,. This means that

(11) 709 (r0) = 9(70)
where g’ =dg/dr. But (2) shows that, if r<1,

(12) rg’ () —g(r) = —lco|+.§(n—1)|c,.1rn,
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and, except when ¢, = 0 for every n > 1, the function (12) of 7 is strictly in-
creasing. Hence, if the trivial case g(r) =|c,| + |c;|7 is excluded, then the
equation (11) cannot have more than one root on the interval (8). This
proves (6), and more, for the case (8). If (8) does not hold, that is, if
either r,=0 or 7,=1, then (6) is obvious from (2).

It also follows that, if ro=1, then the function (12) is negative for
every positive r<1 (except in the trivial cases which have been ex-
cluded). Hence

(13) 2 =Dle) S leal i ro=1.
But (13) implies that

g 2lea| < Afnicnl < Jeol +ca] -

Hence g(1) = ' |c,| <o and
0
29(1) < leg| + legl + 2(lco| + |c4l)
= 3leol +2leg] +leg] = (32+22+ 12 (Jeg|2 + ey + JealD)E

and so, by (3), g(1) < 3(32+22+12) = (3+})t.

In view of (5), this proves (9), where ry=1. If ry,=0, then ¢,=0 in (2),
hence the min on the left of (5) is |¢;|, and so (10) follows from the case
n=1 of (3).

4. In order to prove (7), it is sufficient to ascertain that
(14) 9(1/3) < 1,

since g¢(r)/r becomes 39(1/3) at r=1/3. But (14) is a well-known result
of Bohr [2, pp. 28-29], which follows directly from (2) and (4), since

9(1/3) < leol +2(1~ co|) %' 37 =1,
By considering the linear functions
(15) fa2) = —a)/(1-az), O<a<l,

(functions for which (1) is clearly satisfied), and letting @ — 1, Bohr also
observed that the 1/3 of (14) cannot be improved to any greater absolute
constant. But this fact fails to imply that the 3 of (7) cannot be improved
to any smaller absolute constant. This can however be concluded as
follows:
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First, from (15), .
fo2) = —a+(@t—a) Y anen,
1

where 0 <a <1. Hence, from (2),
go(r) = a+(a1—-a) S‘ anrm .
The last three formulae imply that '
(16) do(r) = 20+ (r—a)/(l—ar), O0=r<1,

(and (16) shows that g,(1/3) — 1 as @ - 1, which is Bohr’s result). If (16)
is inserted in (11), where g=g,, there results for ry=r4(g,) a quadratic
equation. It is readily found that, if a (< 1) is close enough to 1 (in
fact, if a >2/5*), then one of the roots r, of that equation exceeds 1,
while the other root is within the range (8) and is given by

a— (ba? —4)}

(1 —a?) (4 < 5a% < 5).

(17) 7o = 7o(g,) =

It follows from (17) that
7o = 14+o0(l—a)

as @ - 1. Since this implies that
(ro—a){(l—arg) >1 as a-1,
it is seen from (16) that
lim g,(ro)/re = Lim g,(ry) = lim (2a+1) = 3.
a—>1 a—>1 a—>1

In view of (5), this proves that the 3 is the best absolute constant in (7).

5. If only (1) is assumed but the limiting cases r,=1 and r,=0 (cases
in which (7) can be improved to (9) and (10) respectively) are disregarded,
then (11) defines a unique r, satisfying (8). But (11) and (8) show that
(5) can be written in the form
(18) min g(r)/r = g'(r,)

0<r<l1
(where g’ =dg/dr). Consequently, the inequality (7) and its final nature
can be formulated as follows:

If f(2) is subject to only (1) but the limiting cases, r,=0 and r,=1, of
(8) are excluded in (5), then
(19) g'(ro) < 3,

and the 3 of (19) cannot be improved to any smaller absolute constant.
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Actually, (19) bolds in the limiting cases of (8) also. In fact, if r,=0,

then g'(ry) =|¢4]), by (2), and so the case n=1 of (3) shows that (19) is

satisfied (since 3 >1). In the remaining case, ry=1. Then (2) shows that,

formally, - -

g'trg) = g'(1) = X' nley] = ' lea| — eyl
0

1

by (13). Hence -
9'(1) = %’ lenl = g(1) .

It follows therefore from (9) that (19) holds also when r,=1.

REFERENCES

1. A. Cauchy, Buvres, sér. 1, vol. IX (1896), pp. 75-81.

2. E. Landau, Darstellung und Begrindung eintger neuerer Ergebnisse der Funktionen-
theorie, 1. Aufl., Berlin, 1916.

3. P. Nekrassoff, Der Modul des Maximum Maximorum einer Function f (re""i) in Bezug
auf @ und die Anwendung seiner Eigenschaften auf die Reihe von Lagrange, Math.
Ann. 31 (1888), 337-358.

‘THE JOHNS HOPKINS UNIVERSITY, BALTIMORE, MARYLAND, U.S.A.



