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ON SOME DIOPHANTINE EQUATIONS
OF THE TYPE 42 —f2=q3

OVE HEMER

This paper contains some notes on cubic forms with negative dis-
criminant, with applications to the special equations y2—f2=a%, where
f=11,12, ..., 25.

An equation AU3+BU2V +CUV2+DV3=M or more briefly

(1) FI(U’ V)= (A7B: C9D)=M

may often be shown insoluble by consideration of congruences modulo
powers of some prime p (e.g. Mordell [5]), but (4, B, C, D) =M (mod p*)
for every p and k£ does not imply that (1) is soluble (see Skolem [9] and
[10]). If N(u) denotes the norm of u, (1) can be looked upon as

(2) N@U+AV) = M

with some necessary conditions for solubility, above all that » and 2 must
be integers in the ring B(1, «, §), where F';(«, —A)=0 and F,(—D, §)=0
(see Delaunay [2]). The equation (2) can be transformed into

(3) NEU+Vo) =m,
where k is a rational integer, x|k, and m = M N (k/x), i.e. (1) is equivalent to
(4) F(’LL,’D)=(1,P,Q,R)=m,

and we can concentrate on equations of this type.
If F has a negative discriminant, (4) can be replaced by the equations

(5) u+v0 = p;E",

where u; represents all the different, i.e. non-associated, integers in the
ring R(p) with the norm N(u,)=m, while ¢ is defined by F(g, —1)=0,
and ¢ is the fundamental unit in B(p). Already Lagrange has shown that
(4) can be replaced by a number of equations G;(w, z) =1, corresponding
to the different solutions u; of the congruence

(6) F(u, 1) = 0 (modm)
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(and F(u, d)=0 (modm), corresponding to d|u; in (5) if d3lm). We can
suppose that u; contains no rational integer and then a solution of (5)
implies (v, m)=1, i.e. we have a v’ such that v'=1 (modm,;) and
v’ =u; (modm;), where m, is the least rational integer containing u,,
i.e. m;/m. Then (u;+ g, m)=pu, and (6) is satisfied by every « =u, (modm,),
which gives an equation G;=1. Otherwise (5) is insoluble (cf. (18)
p. 106). Conversely wu;%u, (modm;) implies u;=u;. We also find (no
rational integer dividing u; or u;) the following

LevMa 1. If (u;, uj)=0+1, No=d, then a necessary condition that both
i and u; give soluble equations (5) is that none of them contain ideals
prime to 6 but not to d.

Proor. Suppose that (u;+ g, m)=pu; and (u;+0, m)=pu;. Let p be a
prime divisor of d. Then 9 contains an ideal p such that p|d. Suppose
that p contains another ideal q prime to é but a divisor of u;,. We get
p a divisor of both (u;+¢) and (u;+¢) and hence p|(w;—wu;). Since
q|(u;+0) and q|p we further get q|(u;+ @), i.e. q[d. This contradiction
shows that if (u;+ 9, m)=p; we cannot have (u;+g,m)=p;, and the
lemma is proved.

Lemma 1 restricts the number of equations (5). However we do not
need it for the special applications in this paper.

Further the well-known theorem by Delaunay and Nagell about the
number of representations of 1 by cubic forms with negative discrimi-
nant (Delaunay [1], Nagell [7], and related in Nagell [8]) immediately
gives

LeMmA 2. A mecessary condition that (5) have more than two solutions
(u,v) is that there is a wunit n in the corresponding field such that
1D (n)=m2D(F), where tim. There are never more than three solutions,
except if (5) is equivalent to an equation G=1 with D(G)= —23, —31 or
— 44, in which cases there are 5, 4 and 4 solutions respectively.

Proor. As stated above a soluble equation (5) corresponds to a single
equation G=1.

As an example the examination of the equation y*—33-3%=2% (Hemer
{3, p. 74]) gives F=3-(1, —1, 1, 1)=3, corresponding to four of the nine
solutions of y2—297=23 In order to decide whether there can be a
third solution of (5), it is generally more simple, however, to determine
the equation G@=1 and use the necessary eondition D(¢)=D(Q).

If we write ¢ =a,02+b,0+c¢,, (5) can be replaced by a condition

(7) ta,+8b,+rc, = 0,



ON SOME DIOPHANTINE EQUATIONS OF THE TYPE y2—f2 = a8 97

which often may be shown impossible modulo some prime-power p*.
Below I shall give some results concerning the often occurring case r=0,
i.e. ta, +sb, =0, but first I give a general theorem which is a generaliza-
tion of lemma 7 in Hemer [4].

THEOREM 1. Suppose P<1, R>0 in (4) (always achievable by a uni-
modular substitution), D(F)<0 and 0<e<1. Let v, be the least positive
integer such that D (1, P, Q, R—v,73) < 0. Then a solution of (4) with uv>0
implies 0 <v<wvymd. If further wv <0, a solution of (5) with n <0 implies

logm —logp

n > (m and u positive) .

loge
Proor. Put w=wvz. Then (4) gives ®*F(z,1)=m. The equation
F(z,1)=f(2)=0 has only one real solution z= —p. We get the possible
fmin>v,73 for 2= — 4P+ }(P2—3Q)*=0, and since f(0)=1, uv>0 im-
plies that 0 <v3<v,;®m. The case uv=0 is trivial and uv <0 gives

R
(u+tve')(u+ve") = u2+(P—9)W’+'§v2 1

since p>0. Hence u+vp <m, i.e. e"u<m, which proves the last part of
the theorem.

Now we return to the special case r=0 in (7) and begin with a simple
generalization of lemma 8 in Hemer [4].

LemMA 3. Let x=ap?+bp +c be an integer in the ring R(p) and suppose
that a =b =0 (mod p*¥), p an odd prime, (x, p)=1, and ta +sb==0 (mod p%*);
t, s and k ratvonal integers, k> 0. Then, if a®=a,0*+b,0+c¢,, ta, +sb,+0
Jor any n=0.

ProoF. Suppose
PP pMn, B = 0.

Then, if »>0 and p > 2, we find modulo p?*+*
a, = nc*'a and b, = nc"1b,
ie. ta, +sb, =0 (mod p?*+*t), Further a"a—"=1 gives

ta_,+sb_, = —c_,2(ta, +sb,) (mod p2*+2h) |

and the lemma is proved even for n <0.
Further we shall generalize a lemma by Delaunay (lemma 8a, Hemer

[4]).

Math. Scand. 4. 7
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Levma 4. Suppose x=ap?+bo+c, where F(p, —1)=0, F defined by
(4), and let p be an odd prime, divisor of d-N(aP+b—ap), where
d=(N(aP+b—ag), N(sP—t—sp)), that is (F(aP+b, —a), F(sP—t, —s)),
(¢, p)=1, and (t,8)=1. Let further o7 be the least power of « with
a,=0 (modp). Then firstly p|b,, and secondly ta,+sb,=0 implies that
r|n, 1.e. lemma 3 may be applied to «'.

Proor. The equation a®=a,02+b,0+c, gives
“/n_‘xun — (el_eu) (an(P_Q)+bn) ,

ie. (aP+b—ap)|(a,P +b,—a,0) and thus pla, implies p|b,. Also, if
ta, = —sb, =std,, we find (aP +b—ap)|d,(sP —t—sp) and

N(@P+b—ag)ldd,? .
Hence pla,, and r|n.

If ta,+sb.=0 (modp*) for every p satisfying lemma 4, or if it is
possible to show that r|n, we may get new values of p, if we start from
o’ instead of w.

Now consider the powers of

(8) of = a,0%+b,0+¢; (modp),

where (x, p)=1, and the triples 7', = (a,, b,, ¢;), where a;, b, and c¢; assume
complete systems of residues modulo ». Since there are exactly p? such
triples with a,=1, there is always an ¢ < p?+ 1 such that either a;=0 or
T,=kT;, j<i, that is a®=ka’ (modp). In the last case suppose ¢=j+r.
Then, since (x, p)=1, we get

&' = k (modyp),

and since (8) is defined by a recursion formula, this implies that
a,=b,=0 (modp). Hence there is always an ¢=<p?+1 such that
;=0 (modp) (and an ¢ < p?+ p+ 1 such that @,=b;=0 (mod p)) for every
prime p.

If p is no prime in K(p), it is possible to find lower limits by the gen-
eralized theorem of Fermat

«N® = & (modp),

where p is a prime ideal. If (x,p)=1, a¥®1=1 (modyp), and we have
the following four cases:
1. (p)=pP, Py ps, which gives aP-1=1 (modp),
2. (p)=pq (q a prime ideal of the second degree) and a?*-1=1 (mod p),
3. (p)=vt. Since p is an ideal of the first degree we always have a
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rational integer A such that «=h (modp), i.e. x=h+m, p|(), and then
we find a?=(h+n)P=h?=h (modp) if p>2, and a?=1 (mod2) if p=2.

4. (p)=p,%-p,. As above, putting x=ag2+bp+¢, we can suppose
pi1l(e). (Otherwise ¢=h (modp,) and we find ¢,=¢—h divisible by p,).
Then = Pp? (modp), ptP and «?=Pr-2(aP +b)e?+c (modp). In par-
ticular, if we consider the case p|F(b+aP, —a), i.e. that p satisfies
lemma 4, we get

F = (b+aP)*b = 0 (modp),

i.e. p|b or p|(b+aP).

If p|b then «P=ap*+c=o (modp), ie. «Pl=1 (modp), and if
p|(b+aP) then «? =c¢ (modp).

Then the least exponent r for which «”"=k (modp) is a divisor of the
exponents given above.

For the following applications to some equations y%—f2=2® we shall
use the results above, and in the special case of (1)

(9) . (Aa 0,0, D) =M )
M=1or 3, A and D positive, the theorem by Nagell (Nagell [6] and [8]):

THEOREM 2. The equation (9) has at most one solution (u,v), wv+0,
except 1n the case (1, 0, 0, 2) =3, which has exactly the two solutions (1, 1)
and (— 5, 4). Since (9) belongs to the field K (V3 D/A), there is only one sol-
uble equation for each field, except for the fields K (i/g) and K (s[/_2_(‘)), which
have the three soluble equations (1,0,0,2)=1 and 3 and (1,0, 0, 4)=3,
and the two equations (1,0, 0, 20)=1 and (2, 0, 0, 5) =3, respectively.

Applications.

An equation y2—jf2=a3 can be replaced by the ‘reducible” equation
(1,0, 0, 1)=2f and }(3"—1) equations (A, 0, 0, D)=2f4-1D-! if 2f con-
tains r different primes (see Hemer [3], theorem 2). Now I shall give
the complete solutions of the equations y2 —f? =13 with f=11, 12, ..., 25.

y?—112=2a% Solutions (0, 11) and (12, 43).

Corresponding forms Solutions

(1,0,0,1) = 22 impossible modulo 9.
(1,0,0,2) =11 (3, —2).
(1,0,0,11) = 2 no solutions.
(2,0,0,11) = 1 impossible modulo 9.

(1,0,0,22) =1 1, 0).

7.
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(1,0,0,2)=11. Put ¢*=2. Then (3—2¢) is the only ideal in K(p)
with the norm 11, and we obtain

u+ve = (3—20)(0—1)",

which gives 3a,—2b,=0. We find =0 (mod3) and &= —3p2+3p+1,
and hence by lemma 3 there is no solution with »n =+ 0.

(1,0,0,11)=2. Put g*=11. The only ideal in K(p) with the norm 2
is not principal (the square of it is (5—¢?). Hence the equation is in-
soluble.

(1,0,0,22)=1. We have ¢®*=22 and e= —4p2+39+23. F(3,4) =
5.7-41 is divisible by 5 and 7 and £?=21¢2+1 (mod72). Hence (1, 0)
is the only solution by lemma 4.

y?—122=x8%  Solution (0, 12).

(1,0,0,1) = 24 impossible modulo 9.
(1,0,0,2) = 12 impossible modulo 8.
(1,0,0,3) = 8 2, 0).
(1,0,0,6) = 4 impossible modulo 8.
(2,0,0,3) =4 impossible modulo 8.
(1,0,0,3)=8. If =3, we get (2)=(0—1)(e®+p+1), ie.
(10) u+vp = 2(%—-2)"
and
(11) u+ve = (¢—10(e*—2)".

Since F(0, —1)= —3 and £2=3p2+1 (mod9), (10) has only the solution
n=0 by lemma 4. In (11) we get the condition 2a,+ 36, — 3¢, =0. This
implies modulo 3 that »=0 (mod3) and modulo 2 that n=1 (mod3),
i.e. (11) is insoluble.

y?—132=a3 Solutions (0, 13), (3, 14) and (78, 689).

(1,0,0,1) = 26 (3, —1).

(1,0,0,2) =13 impossible modulo 9.

(1,0,0,13) = 2 impossible modulo 9.

(1,0,0, 26) =1 (1, 0), (3, —1), and no more by theorem 2.
(2,0,0,13) =1 impossible modulo 9.

y?—142=a%. Solutions (—3, 13), (0, 14) and (84, 770).

(1,0,0,1) = 28 3, 1).

(1,0,0,2) =14, (1,0,0,7) = 4, and (1,0, 0, 14) = 2 all insoluble

modulo 9.
(1, 0, 0, 28)

1 (1,0), (=3, 1), and no more by theorem 2.
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y:—152=a% Solutions (—6,3), (—5,10), (0,15), (4,17), (6, 21),
(10, 35), (15, 60), (30, 165), (60, 465), (180, 2415), (336, 6159), (351, 6576)
and (720114, 611085363).

(1,0,0,1) = 30 impossible modulo 9.

(1,0,0,2) =15 (-1, 2).

(1,0,0,3) =10 (13, —9).

(1,0,0,5) = 6 (1, 1).

(1,0,0,6) =5 (=1, 1) and (467, —257).

(2,0,0,3) =5 (1, 1) and (—8, 7).

(1,0,0,10) = 3 impossible modulo 9.

(2,0,0,5) =3 (—1, 1) and no more by theorem 2.

(1,0,0,15) = 2 no solutions.

(3,0,0,5) = 2 (-1, 1).

(1,0,0,30) = 1 (1,0) and no more by theorem 2, since
(9, 0, 0, 10)=1 is soluble.

(2,0,0,15) =1 (2, —1) and no more by theorem 2.

(3,0,0,10) = 1 (3, —2) and no more by theorem 2.

(5,0,0,6) =1 (=1, 1) and no more by theorem 2.

(1, 0,0,2)=15. We have ¢®=2. Since (3)=(p+ 1)® and only one ideal
exists with the norm 5, we only get

utve = (20— 1)(g—1)"

with the condition 2b, —a, =0. We find 3|z and =1 (mod 3), but lemma
3 fails. The corresponding equation G=1 is (1, 6,0,18)=1 with the
fundamental unit »=30%2—120—47, and now lemma 3 can be used.

(1,0, 0,3)=10. We have ¢*=3 and, since there is only one ideal in
K (o) with the norm 2 and one with the norm 5, we get

u+oe = (*+1)(e*-2)"

with the condition a,+¢,=0. We find n=2 (mod3) and a solution
n=2. By theorem 1 we have n>0. Putting n=2+3"n,, 3tn,, we get
a,+c¢,= + 37 (mod 37+1), and there are no other solutions.

(1,0,0,5)=6. We have g®=5, (3)=(2— ¢)® and only one ideal in K(p)
with the norm 2. Then we obtain

u+ve = (0+1)(20%—40+1)"

with the condition a,+b,=0. By lemma 4 we get p=13 and, since
et= —4 (mod13) and a,+b,= — 39 (mod 132), there is no solution for n+0.

(1,0,0,6)=5. We have ¢®=6, and, since (5) contains only one prime
of the first degree, we get
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u+ve = (¢—1)(3¢*—-60+1)"
with the condition —a,+b,=0. We obtain solutions for =0 and 2,
and by lemma 2 there is no further solution. This may be stated more
easily by the equivalent equation (1,0, —18, 42)=1, which has the
fundamental unit =420 —215=¢2.

(2, 0, 0, 3)=5. This can bereplaced by (1, 0, 18, 6)=1withe= —360+1,
and hence there are only two solutions by lemma 2.

(1,0, 0, 15)=2. We have ¢®*=15. The only ideal with the norm 2 is
not principal (the square of it is p2+2p—11), and the equation is in-
soluble.

(3,0, 0, 5)=2. This can be replaced by (1, 12, 3, 4)=1 with

&= 1896%2—23910+1951 .
Lemma 4 is satisfied by p=37. Since £2= —11 (mod 37) and
a5 = 16-37 (mod 372) ,

there is no solution with n=0.

13 scolutions might be the greatest number stated for any equation
y?— k=23, and the solution (720114, 611085363) is probably the greatest
one pointed out to any equation stated previously.

y?—162=x% Solution (0, 16).
(1,0,0,1) = 32 impossible modulo 9.
(1,0,0,2) = 16 (0, 2).

(1,0,0,2)=16. This can be replaced by (1,0,0,4)=1 with ¢®=2,

which gives
’ u+092 = (g_l)n’

ie. b,=0. We find 3|n, £=1 (mod3), and b,= 3, and there is no solution
with #==0 by lemma 3.

y?—172=a%. Solutions (—4, 15), (0, 17) and (68, 561).

(1,0,0,1) = 34 no solutions.

(1,0,0,2) =17 (1, 2).

(1,0,0,17) = 2 no solutions.

(1,0,0,34) = 1 (1, 0).

(2,0,0,17) = 1 (—2, 1) and no more by theorem 2.

(1,0,0,2)=17. We have ¢®*=2 and (17)=(20+1)(4¢2—2p+ 1), and
this gives
u+vg = (2¢+1)(e—-1)"
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with the condition a, + 2b,=0. Modulo 5 we find 8|n and
& = —80p%2+100p+1,

i.e. there are no solutions with n+0 by lemma 3.

(1,0,0,17)=2. We have ¢®*=17 and e= —T7p+18, and (2) contains
only one prime of the first degree, 4(¢o*+ 290+ 7), which does not belong
to the ring R(g). Hence there are no solutions to the equation.

(1,0, 0,34)=1. We have ¢*=34 and ¢= —519%2— 249+ 613, i.e. there
is no more solution by lemma 3.

y2—182=a3. Solution (0, 18).
(1,0,0,1) = 36 no solution. -

(1,0,0,4) =9, (1,0,0,9) = 4, and (4,0,0,9) =1 all impossible
modulo 9.
(1,0,0,36) = 1 (1, 0).

(1,0, 0,36)=1. We have ¢®=6, and ¢=39%— 69+ 1, and this gives
u+vg? = (3p2—6p+1)"
with the condition b, = 0, which is impossible for n=+0 by lemma 3.

y2—192=g8%, Solution (0, 19).

(1,0,0,1) = 38 no solution.

(1,0,0,2) =19, (1,0,0,19) = 2, and (2,0,0,19) =1 all impos-
gible modulo 19.

(1,0,0,38) =1 (1, 0).

(1,0, 0, 38)=1. We have ¢* =38, e= — 302+ 550 — 151 and 13| F(55, 3).
Since é2=1 (mod13) and a,=6-13 (mod 132), there is no further solution
by lemma 4.

y2—202=x%. Solution (0, 20).

(1,0,0,1) = 40 impossible modulo 9.

(1,0,0,2) = 20, (1,0,0,10) = 4 and (2, 0,0,5) = 4 all impossible
modulo 8.

(1,0,0,5) = 8 (2, 0).

(1, 0, 0, 5)=8. We have g*=5 and only one ideal exists with the norm
2. We obtain

(12) u+ve = 2(202—4p+1)"
and
(18) u+ve = (e*+0+2)(20*—4e+1)*.
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In (12) we get the condition a,=0 and, by lemma 4, =0 is the only
solution since 13|F(—4, —2), e*= —4 (mod13), and a,=26 (mod 132).
In (13) we have the condition 2a,+6,+c,=0, which is impossible
since e=1 (mod2).

y?—212=a%. Solutions (— 6, 15), (0, 21), (7, 28) and (42, 273).

(1,0,0,1) = 42 impossible modulo 9.

(1,0,0,2) =21, (1,0,0,3) = 14, (2,0,0,3) =7, (1,0,0,14) = 3,
(2,0,0,7) = 3, (1,0,0,21) = 2, (3,0,0,7) = 2, (2,0,0,21) =1, and
(3,0,0,14) = 1 all impossible modulo 7.

(1,0,0,6) =7 (1, 1).

(1,0,0,7) =6 (-1, 1).

(1,0,0,42) = 1 (1,0), and no more by theorem 2 since
(49, 0, 0, 6)=1 is soluble.

(7,0,0,6) = 1 (1, —1), and no more by theorem 2.

(1,0,0,6)="7. Then g*=6, and we get

(14) u+vo = (0+1)(30*—60+1)",

(15) u+ve = (20°+40+7)(32—6p +1)"
and

(16) u+vo = (e2+0—5)(3p*—6p+1)".

Equation (14) gives a,+b,=0, and this has the only solution »=0 by
lemma 3. In (15) we get the condition 7a,+4b,+2c,=0 and in (16)
—b5a,+b,+c,=0, both of which are impossible modulo 3.
(1,0,0,7)=6. Then ¢*=7 and we only get
u+vg = (e—1)(2—eo)"
with the condition —a, +b,=0. Modulo 3 we find 3|» and
&8 = 602—120+1.
- Since 5|F(~—12, —6), ¢?=1 (mod5), and —a,,+ b, =10 (mod 25), there
are no more solutions by lemma 4.
y?—222=g3, Solution (0, 22).

(1,0,0,1) = 44 no solution.

(1, 0, 0, 4) =11, (1,0,0,11) = 4, and (4,0,0, 11) = 1 all impos-
sible modulo 9.

(1,0,0,44) = 1 a1, 0).

(1,0,0,44)=1. Then ¢®*=44, but the field is defined by the form
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(1, 5,1, 3) with the corresponding fundamental unit =50%—3760+61,
where 0°—5602+0—-3=0. In R(p) we get e=n2= —213p2+ 3039+ 1585
and there is, according to lemma 3, no further solution.

y2—232=a3  Solution (0, 23).

(1,0,0,1) = 46 no solution.

(1,0,0,2) = 23, (1,0,0,23) =2 and (2,0,0,23) =1 all impos-
sible modulo 9.

(1,0,0,46) = 1 (1, 0).

(1,0,0,46)=1. We have ¢®=46 and £=309¢%+ 489 —4139, i.e. no
further solution by lemma 3.

y2—242=a? Solutions (—8, 8), (0, 24) and (160, 2024).

(1,0,0,1) = 48, (1,0,0,3) = 16 and (2,0,0,3) = 8 all impossible
modulo 9.

(1,0,0,2) = 24 (2, 2) and (—10, 8).

(1,0,0,6) = 8 (2, 0).

(1,0, 0, 2)=24. Then g*=2 and, since (2) and (3) are cubes, we only

get
u+tvg = 2(e+1)(e—1)

corresponding to the equation (1, 0,0,2)=3, which occurred as an
exception in theorem 2.
(1,0, 0, 6)=8. Then ¢®*=6 and (2) a cube gives

u+vp = 2(3g°— 6o +1)",
and there is no further solution by lemma 3.

y2—252=a3. Solutions (0, 25), (6, 29) and (75, 650).
(1,0,0,1) = 50and (1,0,0,10) = 5 both impossible modulo 9.

(1,0,0,2) = 25 3, —1).
(1,0,0,5) = 10 (-5, 3).
(1,0,0,50) =1 (1, 0), and no more by theo-

rem 2, last part.

(1,0, 0,2)=25. We have ¢*=2 and 5=(p2+1)(— 0%+ 20+1), where
(0—1)(02+1)2=3—p and (—p%+2p+1) is a prime of the second degree.
We get )
(17 u+ve = (3—g)(e—-1)"

with the condition 3a, —b, =0, and



106 OVE HEMER

(18) utve = (—@*+2¢+1)(e—-1)
with the condition a, +2b, —¢c,=0. In (17) we find 3|n and
3a;—by; = —3 (mod9),

i.e. n=0 gives the only solution by lemma 3. Further =1 (modS5),
and (18) is impossible modulo 5, as is shown by examining # modulo 8.
As stated in this paper just before lemma 1, we also find (18) impossible
since the congruence (6), ie. %?+2=0(mod25), is satisfied by
u= — 3 (mod25), but not otherwise modulo 5, though —p%+2¢+11is a
divisor of 5.

(1, 0,0, 5)=10. Then @®*=35, and we only get

u+ve = (3¢—5)(2¢*—40+1)"

with the condition - 5a, + 3b,=0. Since 13| F(4, 2), but 13+ F(5, —3),
e*= —4 (mod13) and — 5a,+ 3b,=13 (mod132), n=0 gives the only solu-
tion by lemma 4.

Finally I will complete my dissertation (Hemer [3]), in the case

y?— 62=23, the equation (1, 0, 0, 3) =4 (p. 28) by
utve = (®+e+1)(e*—2)"  a,+b,+0, =0,
and in the case y2—102=413, the equation (1, 0, 0, 5)=4 (p. 31) by
u+vp = (302 +50+9)(202—40+1)", 9a,+56b,+3c, =0,

and these relations are both impossible modulo 2.
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