ON SOME DIOPHANTINE EQUATIONS OF THE TYPE $y^2-f^2=x^3$

OVE HEMER

This paper contains some notes on cubic forms with negative discriminant, with applications to the special equations $y^2-f^2=x^3$, where $f=11, 12, \ldots, 25$.

An equation $AU^3 + BU^2V + CUV^2 + DV^3 = M$ or more briefly

(1)
$$F_1(U, V) = (A, B, C, D) = M$$

may often be shown insoluble by consideration of congruences modulo powers of some prime p (e.g. Mordell [5]), but $(A, B, C, D) \equiv M \pmod{p^k}$ for every p and k does not imply that (1) is soluble (see Skolem [9] and [10]). If $N(\mu)$ denotes the norm of μ , (1) can be looked upon as

$$(2) N(\varkappa U + \lambda V) = M$$

with some necessary conditions for solubility, above all that κ and λ must be integers in the ring $R(1, \alpha, \beta)$, where $F_1(\alpha, -A) = 0$ and $F_1(-D, \beta) = 0$ (see Delaunay [2]). The equation (2) can be transformed into

$$N(kU+V\varrho)=m,$$

where k is a rational integer, $\varkappa|k$, and $m = MN(k/\varkappa)$, i.e. (1) is equivalent to

(4)
$$F(u,v) = (1, P, Q, R) = m,$$

and we can concentrate on equations of this type.

If F has a negative discriminant, (4) can be replaced by the equations

$$(5) u + v\varrho = \mu_i \varepsilon^n,$$

where μ_i represents all the different, i.e. non-associated, integers in the ring $R(\varrho)$ with the norm $N(\mu_i)=m$, while ϱ is defined by $F(\varrho,-1)=0$, and ε is the fundamental unit in $R(\varrho)$. Already Lagrange has shown that (4) can be replaced by a number of equations $G_i(w,z)=1$, corresponding to the different solutions u_i of the congruence

$$(6) F(u, 1) \equiv 0 \pmod{m}$$

Received September 23, 1955.

(and $F(u, d) \equiv 0 \pmod{m}$, corresponding to $d|\mu_i$ in (5) if $d^3|m$). We can suppose that μ_i contains no rational integer and then a solution of (5) implies (v, m) = 1, i.e. we have a v' such that $vv' \equiv 1 \pmod{m_i}$ and $uv' \equiv u_i \pmod{m_i}$, where m_i is the least rational integer containing μ_i , i.e. $m_i|m$. Then $(u_i + \varrho, m) = \mu_i$ and (6) is satisfied by every $u \equiv u_i \pmod{m_i}$, which gives an equation $G_i = 1$. Otherwise (5) is insoluble (cf. (18) p. 106). Conversely $u_j \equiv u_i \pmod{m_i}$ implies $\mu_j \neq \mu_i$. We also find (no rational integer dividing μ_i or μ_j) the following

LEMMA 1. If $(\mu_i, \mu_j) = \delta + 1$, $N\delta = d$, then a necessary condition that both μ_i and μ_j give soluble equations (5) is that none of them contain ideals prime to δ but not to d.

PROOF. Suppose that $(u_i + \varrho, m) = \mu_i$ and $(u_j + \varrho, m) = \mu_j$. Let p be a prime divisor of d. Then p contains an ideal p such that $p|\delta$. Suppose that p contains another ideal q prime to δ but a divisor of μ_i . We get p a divisor of both $(u_i + \varrho)$ and $(u_j + \varrho)$ and hence $p|(u_i - u_j)$. Since $q|(u_i + \varrho)$ and q|p we further get $q|(u_j + \varrho)$, i.e. $q|\delta$. This contradiction shows that if $(u_i + \varrho, m) = \mu_i$, we cannot have $(u_j + \varrho, m) = \mu_j$, and the lemma is proved.

Lemma 1 restricts the number of equations (5). However we do not need it for the special applications in this paper.

Further the well-known theorem by Delaunay and Nagell about the number of representations of 1 by cubic forms with negative discriminant (Delaunay [1], Nagell [7], and related in Nagell [8]) immediately gives

LEMMA 2. A necessary condition that (5) have more than two solutions (u, v) is that there is a unit η in the corresponding field such that $t^6D(\eta)=m^2D(F)$, where t|m. There are never more than three solutions, except if (5) is equivalent to an equation G=1 with D(G)=-23, -31 or -44, in which cases there are 5, 4 and 4 solutions respectively.

PROOF. As stated above a soluble equation (5) corresponds to a single equation G=1.

As an example the examination of the equation $y^2 - 33 \cdot 3^2 = x^3$ (Hemer [3, p. 74]) gives $F = 3 \cdot (1, -1, 1, 1) = 3$, corresponding to four of the nine solutions of $y^2 - 297 = x^3$. In order to decide whether there can be a third solution of (5), it is generally more simple, however, to determine the equation G = 1 and use the necessary condition $D(\varepsilon) = D(G)$.

If we write $\varepsilon^n = a_n \varrho^2 + b_n \varrho + c_n$, (5) can be replaced by a condition

$$ta_n + sb_n + rc_n = 0,$$

which often may be shown impossible modulo some prime-power p^k . Below I shall give some results concerning the often occurring case r=0, i.e. $ta_n + sb_n = 0$, but first I give a general theorem which is a generalization of lemma 7 in Hemer [4].

THEOREM 1. Suppose $P \le 1$, R > 0 in (4) (always achievable by a unimodular substitution), D(F) < 0 and $0 < \varepsilon < 1$. Let v_1 be the least positive integer such that $D(1, P, Q, R - v_1^{-3}) < 0$. Then a solution of (4) with uv > 0 implies $0 < v < v_1 m^{\frac{1}{2}}$. If further uv < 0, a solution of (5) with n < 0 implies

$$n > \frac{\log m - \log \mu}{\log \varepsilon}$$
 (*m* and μ positive).

PROOF. Put u=vz. Then (4) gives $v^3F(z,1)=m$. The equation F(z,1)=f(z)=0 has only one real solution $z=-\varrho$. We get the possible $f_{\min}>v_1^{-3}$ for $z=-\frac{1}{3}P+\frac{1}{3}(P^2-3Q)^{\frac{1}{2}}\geq 0$, and since $f(0)\geq 1$, uv>0 implies that $0< v^3< v_1^3m$. The case uv=0 is trivial and uv<0 gives

$$(u+v\varrho')(u+v\varrho'') \,=\, u^2+(P-\varrho)uv+\frac{R}{\varrho}v^2\,>\,1$$

since $\varrho > 0$. Hence $u + v\varrho < m$, i.e. $\varepsilon^n \mu < m$, which proves the last part of the theorem.

Now we return to the special case r=0 in (7) and begin with a simple generalization of lemma 8 in Hemer [4].

LEMMA 3. Let $\alpha = a\varrho^2 + b\varrho + c$ be an integer in the ring $R(\varrho)$ and suppose that $a \equiv b \equiv 0 \pmod{p^k}$, p an odd prime, $(\alpha, p) = 1$, and $ta + sb \equiv 0 \pmod{p^{2k}}$; t, s and k rational integers, k > 0. Then, if $\alpha^n = a_n \varrho^2 + b_n \varrho + c_n$, $ta_n + sb_n \equiv 0$ for any $n \equiv 0$.

PROOF. Suppose

$$p^h||n, h \geq 0.$$

Then, if n > 0 and p > 2, we find modulo p^{2k+h}

$$a_n \equiv nc^{n-1}a$$
 and $b_n \equiv nc^{n-1}b$,

i.e. $ta_n + sb_n \equiv 0 \pmod{p^{2k+h}}$. Further $\alpha^n \alpha^{-n} = 1$ gives

$$ta_{-n} + sb_{-n} \equiv -c_{-n}^2(ta_n + sb_n) \pmod{p^{2k+2h}}$$
,

and the lemma is proved even for n < 0.

Further we shall generalize a lemma by Delaunay (lemma 8a, Hemer [4]).

Math. Scand. 4.

Lemma 4. Suppose $\alpha = a\varrho^2 + b\varrho + c$, where $F(\varrho, -1) = 0$, F defined by (4), and let p be an odd prime, divisor of $d^{-1}N(aP + b - a\varrho)$, where $d = (N(aP + b - a\varrho), N(sP - t - s\varrho))$, that is (F(aP + b, -a), F(sP - t, -s)), $(\alpha, p) = 1$, and (t, s) = 1. Let further α^r be the least power of α with $a_r \equiv 0 \pmod{p}$. Then firstly $p|b_r$, and secondly $ta_n + sb_n = 0$ implies that r|n, i.e. lemma 3 may be applied to α^r .

PROOF. The equation $\alpha^n = a_n \varrho^2 + b_n \varrho + c_n$ gives

$$\alpha'^n - \alpha''^n \, = \, (\varrho' - \varrho'') \big(a_n (P - \varrho) + b_n \big) \, , \label{eq:alpha'n}$$

i.e. $(aP+b-a\varrho)|(a_nP+b_n-a_n\varrho)$ and thus $p|a_n$ implies $p|b_n$. Also, if $ta_n=-sb_n=std_n$, we find $(aP+b-a\varrho)|d_n(sP-t-s\varrho)$ and

$$N(aP+b-a\varrho)|dd_n^3$$
.

Hence $p|a_n$ and r|n.

If $ta_r + sb_r \equiv 0 \pmod{p^{2k}}$ for every p satisfying lemma 4, or if it is possible to show that r|n, we may get new values of p, if we start from α^r instead of α .

Now consider the powers of

(8)
$$\alpha^i \equiv a_i \varrho^2 + b_i \varrho + c_i \pmod{p},$$

where $(\alpha, p) = 1$, and the triples $T_i = (a_i, b_i, c_i)$, where a_i, b_i and c_i assume complete systems of residues modulo p. Since there are exactly p^2 such triples with $a_i = 1$, there is always an $i \le p^2 + 1$ such that either $a_i = 0$ or $T_i = kT_j$, j < i, that is $\alpha^i \equiv k\alpha^j \pmod{p}$. In the last case suppose i = j + r. Then, since $(\alpha, p) = 1$, we get

$$\alpha^r \equiv k \pmod{p}$$
,

and since (8) is defined by a recursion formula, this implies that $a_r \equiv b_r \equiv 0 \pmod{p}$. Hence there is always an $i \leq p^2 + 1$ such that $a_i \equiv 0 \pmod{p}$ (and an $i \leq p^2 + p + 1$ such that $a_i \equiv b_i \equiv 0 \pmod{p}$) for every prime p.

If p is no prime in $K(\varrho)$, it is possible to find lower limits by the generalized theorem of Fermat

$$\alpha^{N(\mathfrak{p})} \equiv \alpha \pmod{\mathfrak{p}},$$

where $\mathfrak p$ is a prime ideal. If $(\alpha, \mathfrak p) = 1$, $\alpha^{N(\mathfrak p)-1} \equiv 1 \pmod{\mathfrak p}$, and we have the following four cases:

- 1. $(p) = \mathfrak{p}_1 \cdot \mathfrak{p}_2 \cdot \mathfrak{p}_3$, which gives $\alpha^{p-1} \equiv 1 \pmod{p}$,
- 2. $(p) = p \cdot q$ (q a prime ideal of the second degree) and $\alpha^{p^2-1} \equiv 1 \pmod{p}$,
- 3. $(p) = p^3$. Since p is an ideal of the first degree we always have a

rational integer h such that $\alpha \equiv h \pmod{p}$, i.e. $\alpha = h + \pi$, $\mathfrak{p}|(\pi)$, and then we find $\alpha^p = (h + \pi)^p \equiv h^p \equiv h \pmod{p}$ if p > 2, and $\alpha^4 \equiv 1 \pmod{2}$ if p = 2.

4. $(p) = \mathfrak{p}_1^2 \cdot \mathfrak{p}_2$. As above, putting $\alpha = a\varrho^2 + b\varrho + c$, we can suppose $\mathfrak{p}_1|(\varrho)$. (Otherwise $\varrho \equiv h \pmod{\mathfrak{p}_1}$ and we find $\varrho_1 = \varrho - h$ divisible by \mathfrak{p}_1). Then $\varrho^3 \equiv P\varrho^2 \pmod{\mathfrak{p}}$, $p \nmid P$ and $\alpha^p \equiv P^{p-2}(aP+b)\varrho^2 + c \pmod{\mathfrak{p}}$. In particular, if we consider the case p|F(b+aP,-a), i.e. that p satisfies lemma 4, we get

 $F \equiv (b+aP)^2b \equiv 0 \pmod{p},$

i.e. p|b or p|(b+aP).

If p|b then $\alpha^p \equiv a\varrho^2 + c \equiv \alpha \pmod{p}$, i.e. $\alpha^{p-1} \equiv 1 \pmod{p}$, and if p|(b+aP) then $\alpha^p \equiv c \pmod{p}$.

Then the least exponent r for which $\alpha^r \equiv k \pmod{p}$ is a divisor of the exponents given above.

For the following applications to some equations $y^2-f^2=x^3$ we shall use the results above, and in the special case of (1)

$$(9) (A, 0, 0, D) = M,$$

M=1 or 3, A and D positive, the theorem by Nagell (Nagell [6] and [8]):

Theorem 2. The equation (9) has at most one solution (u, v), $uv \neq 0$, except in the case (1, 0, 0, 2) = 3, which has exactly the two solutions (1, 1) and (-5, 4). Since (9) belongs to the field $K(\sqrt[3]{D/A})$, there is only one soluble equation for each field, except for the fields $K(\sqrt[3]{2})$ and $K(\sqrt[3]{20})$, which have the three soluble equations (1, 0, 0, 2) = 1 and (1, 0, 0, 0, 4) = 3, and the two equations (1, 0, 0, 20) = 1 and (2, 0, 0, 5) = 3, respectively.

Applications.

An equation $y^2-f^2=x^3$ can be replaced by the "reducible" equation (1, 0, 0, 1)=2f and $\frac{1}{2}(3^r-1)$ equations $(A, 0, 0, D)=2fA^{-1}D^{-1}$ if 2f contains r different primes (see Hemer [3], theorem 2). Now I shall give the complete solutions of the equations $y^2-f^2=x^3$ with $f=11, 12, \ldots, 25$.

 $y^2 - 11^2 = x^3$. Solutions (0, 11) and (12, 43).

Corresponding forms	${f Solutions}$
(1, 0, 0, 1) = 22	impossible modulo 9.
(1, 0, 0, 2) = 11	(3, -2).
(1, 0, 0, 11) = 2	no solutions.
(2, 0, 0, 11) = 1	impossible modulo 9.
(1, 0, 0, 22) = 1	(1, 0),

(1, 0, 0, 2) = 11. Put $\varrho^3 = 2$. Then $(3-2\varrho)$ is the only ideal in $K(\varrho)$ with the norm 11, and we obtain

$$u+v\varrho = (3-2\varrho)(\varrho-1)^n$$
,

which gives $3a_n - 2b_n = 0$. We find $n \equiv 0 \pmod{3}$ and $\varepsilon^3 = -3\varrho^2 + 3\varrho + 1$, and hence by lemma 3 there is no solution with $n \neq 0$.

(1, 0, 0, 11) = 2. Put $\varrho^3 = 11$. The only ideal in $K(\varrho)$ with the norm 2 is not principal (the square of it is $(5 - \varrho^2)$). Hence the equation is insoluble.

(1, 0, 0, 22) = 1. We have $\varrho^3 = 22$ and $\varepsilon = -4\varrho^2 + 3\varrho + 23$. $F(3, 4) = 5 \cdot 7 \cdot 41$ is divisible by 5 and 7 and $\varepsilon^2 \equiv 21\varrho^2 + 1 \pmod{7^2}$. Hence (1, 0) is the only solution by lemma 4.

$$y^2 - 12^2 = x^3$$
. Solution (0, 12).

$$(1, 0, 0, 1) = 24$$
 impossible modulo 9.
 $(1, 0, 0, 2) = 12$ impossible modulo 8.
 $(1, 0, 0, 3) = 8$ $(2, 0)$.
 $(1, 0, 0, 6) = 4$ impossible modulo 8.
 $(2, 0, 0, 3) = 4$ impossible modulo 8.

(1, 0, 0, 3) = 8. If $\varrho^3 = 3$, we get $(2) = (\varrho - 1)(\varrho^2 + \varrho + 1)$, i.e.

(10)
$$u + v\varrho = 2(\varrho^2 - 2)^n$$
 and

(11) $u + v\varrho = (\varrho - 1)^3 (\varrho^2 - 2)^n.$

Since F(0, -1) = -3 and $\varepsilon^3 \equiv 3\varrho^2 + 1 \pmod{9}$, (10) has only the solution n = 0 by lemma 4. In (11) we get the condition $2a_n + 3b_n - 3c_n = 0$. This implies modulo 3 that $n \equiv 0 \pmod{3}$ and modulo 2 that $n \equiv 1 \pmod{3}$, i.e. (11) is insoluble.

 $y^2-13^2=x^3$. Solutions (0, 13), (3, 14) and (78, 689).

$$(1, 0, 0, 1) = 26$$
 $(3, -1).$

$$(1, 0, 0, 2) = 13$$
 impossible modulo 9.

$$(1, 0, 0, 13) = 2$$
 impossible modulo 9.

$$(1, 0, 0, 26) = 1$$
 $(1, 0), (3, -1),$ and no more by theorem 2.

$$(2, 0, 0, 13) = 1$$
 impossible modulo 9.

 $y^2-14^2=x^3$. Solutions (-3, 13), (0, 14) and (84, 770).

$$(1, 0, 0, 1) = 28$$
 $(3, 1).$

(1, 0, 0, 2) = 14, (1, 0, 0, 7) = 4, and (1, 0, 0, 14) = 2 all insoluble modulo 9.

$$(1, 0, 0, 28) = 1$$
 $(1, 0), (-3, 1), and no more by theorem 2.$

 $y^2 - 15^2 = x^3$. Solutions (-6, 3), (-5, 10), (0, 15), (4, 17), (6, 21), (10, 35), (15, 60), (30, 165), (60, 465), (180, 2415), (336, 6159), (351, 6576) and (720114, 611085363).

(1, 0, 0, 1) = 30impossible modulo 9. (1, 0, 0, 2) = 15(-1, 2).(1, 0, 0, 3) = 10(13, -9).(1, 0, 0, 5) = 6(1, 1).(-1, 1) and (467, -257). (1, 0, 0, 6) = 5(2, 0, 0, 3) = 5(1, 1) and (-8, 7). (1, 0, 0, 10) = 3impossible modulo 9. (2, 0, 0, 5) = 3(-1, 1) and no more by theorem 2. (1, 0, 0, 15) = 2no solutions. (3, 0, 0, 5) = 2(-1, 1). (1, 0, 0, 30) = 1(1, 0) and no more by theorem 2, since (9, 0, 0, 10) = 1 is soluble. (2, -1) and no more by theorem 2. (2, 0, 0, 15) = 1(3, -2) and no more by theorem 2. (3, 0, 0, 10) = 1(5, 0, 0, 6) = 1(-1, 1) and no more by theorem 2.

(1, 0, 0, 2) = 15. We have $\varrho^3 = 2$. Since $(3) = (\varrho + 1)^3$ and only one ideal exists with the norm 5, we only get

$$u + v\varrho = (2\varrho - 1)(\varrho - 1)^n$$

with the condition $2b_n - a_n = 0$. We find 3|n and $\varepsilon^3 \equiv 1 \pmod 3$, but lemma 3 fails. The corresponding equation G = 1 is (1, 6, 0, 18) = 1 with the fundamental unit $\eta = 3\theta^2 - 12\theta - 47$, and now lemma 3 can be used.

(1, 0, 0, 3) = 10. We have $\varrho^3 = 3$ and, since there is only one ideal in $K(\varrho)$ with the norm 2 and one with the norm 5, we get

$$u+v\varrho = (\varrho^2+1)(\varrho^2-2)^n$$

with the condition $a_n + c_n = 0$. We find $n \equiv 2 \pmod{3}$ and a solution n = 2. By theorem 1 we have n > 0. Putting $n = 2 + 3^r n_1$, $3 \nmid n_1$, we get $a_n + c_n \equiv \pm 3^r \pmod{3^{r+1}}$, and there are no other solutions.

(1, 0, 0, 5) = 6. We have $\varrho^3 = 5$, $(3) = (2 - \varrho)^3$ and only one ideal in $K(\varrho)$ with the norm 2. Then we obtain

$$u+v\varrho = (\varrho+1)(2\varrho^2-4\varrho+1)^n$$

with the condition $a_n + b_n = 0$. By lemma 4 we get p = 13 and, since $\varepsilon^4 \equiv -4 \pmod{13}$ and $a_4 + b_4 \equiv -39 \pmod{13^2}$, there is no solution for $n \neq 0$.

(1, 0, 0, 6) = 5. We have $\varrho^3 = 6$, and, since (5) contains only one prime of the first degree, we get

$$u + v\varrho = (\varrho - 1)(3\varrho^2 - 6\varrho + 1)^n$$

with the condition $-a_n + b_n = 0$. We obtain solutions for n = 0 and 2, and by lemma 2 there is no further solution. This may be stated more easily by the equivalent equation (1, 0, -18, 42) = 1, which has the fundamental unit $\eta = 42\theta - 215 = \varepsilon^2$.

(2, 0, 0, 3) = 5. This can be replaced by (1, 0, 18, 6) = 1 with $\varepsilon = -3\theta + 1$, and hence there are only two solutions by lemma 2.

(1, 0, 0, 15)=2. We have $\varrho^3=15$. The only ideal with the norm 2 is not principal (the square of it is $\varrho^2+2\varrho-11$), and the equation is insoluble.

(3, 0, 0, 5) = 2. This can be replaced by (1, 12, 3, 4) = 1 with

$$\varepsilon = 189\theta^2 - 2391\theta + 1951$$
.

Lemma 4 is satisfied by p=37. Since $\varepsilon^{12} \equiv -11 \pmod{37}$ and

$$a_{12} \equiv 16 \cdot 37 \pmod{37^2}$$
,

there is no solution with $n \neq 0$.

13 solutions might be the greatest number stated for any equation $y^2 - k = x^3$, and the solution (720114, 611085363) is probably the greatest one pointed out to any equation stated previously.

 $y^2 - 16^2 = x^3$. Solution (0, 16).

(1, 0, 0, 1) = 32 impossible modulo 9.

(1, 0, 0, 2) = 16 (0, 2).

(1, 0, 0, 2) = 16. This can be replaced by (1, 0, 0, 4) = 1 with $\rho^3 = 2$, which gives $u + v\rho^2 = (\rho - 1)^n$.

i.e. $b_n = 0$. We find 3|n, $\varepsilon^3 \equiv 1 \pmod{3}$, and $b_3 = 3$, and there is no solution with $n \neq 0$ by lemma 3.

 $y^2 - 17^2 = x^3$. Solutions (-4, 15), (0, 17) and (68, 561).

(1, 0, 0, 1) = 34 no solutions.

(1, 0, 0, 2) = 17 (1, 2).

(1, 0, 0, 17) = 2 no solutions.

(1, 0, 0, 34) = 1 (1, 0).

(2, 0, 0, 17) = 1 (-2, 1) and no more by theorem 2.

(1, 0, 0, 2)=17. We have $\varrho^3=2$ and $(17)=(2\varrho+1)(4\varrho^2-2\varrho+1)$, and this gives $u+v\rho=(2\varrho+1)(\varrho-1)^n$

with the condition $a_n + 2b_n = 0$. Modulo 5 we find 8|n and

$$\varepsilon^8 = -80\rho^2 + 100\rho + 1 ,$$

i.e. there are no solutions with $n \neq 0$ by lemma 3.

(1, 0, 0, 17) = 2. We have $\varrho^3 = 17$ and $\varepsilon = -7\varrho + 18$, and (2) contains only one prime of the first degree, $\frac{1}{2}(\varrho^2 + 2\varrho + 7)$, which does not belong to the ring $R(\varrho)$. Hence there are no solutions to the equation.

(1, 0, 0, 34)=1. We have $\varrho^3=34$ and $\varepsilon=-51\varrho^2-24\varrho+613$, i.e. there is no more solution by lemma 3.

$$y^2 - 18^2 = x^3$$
. Solution (0, 18).

(1, 0, 0, 1) = 36 no solution.

(1, 0, 0, 4) = 9, (1, 0, 0, 9) = 4, and (4, 0, 0, 9) = 1 all impossible modulo 9.

$$(1, 0, 0, 36) = 1$$
 $(1, 0).$

(1, 0, 0, 36) = 1. We have $\varrho^3 = 6$, and $\varepsilon = 3\varrho^2 - 6\varrho + 1$, and this gives

$$u+v\varrho^2 = (3\varrho^2-6\varrho+1)^n$$

with the condition $b_n = 0$, which is impossible for $n \neq 0$ by lemma 3.

$$y^2 - 19^2 = x^3$$
. Solution (0, 19).

(1, 0, 0, 1) = 38 no solution.

(1, 0, 0, 2) = 19, (1, 0, 0, 19) = 2, and (2, 0, 0, 19) = 1 all impossible modulo 19.

$$(1, 0, 0, 38) = 1$$
 $(1, 0).$

(1, 0, 0, 38) = 1. We have $\varrho^3 = 38$, $\varepsilon = -3\varrho^2 + 55\varrho - 151$ and $13 \mid F(55, 3)$. Since $\varepsilon^4 \equiv 1 \pmod{13}$ and $a_4 \equiv 6 \cdot 13 \pmod{13^2}$, there is no further solution by lemma 4.

$$y^2-20^2=x^3$$
. Solution (0, 20).

(1, 0, 0, 1) = 40 impossible modulo 9.

(1, 0, 0, 2) = 20, (1, 0, 0, 10) = 4 and (2, 0, 0, 5) = 4 all impossible modulo 8.

$$(1, 0, 0, 5) = 8$$
 $(2, 0).$

(1, 0, 0, 5) = 8. We have $\varrho^3 = 5$ and only one ideal exists with the norm 2. We obtain

(12)
$$u + v\varrho = 2(2\varrho^2 - 4\varrho + 1)^n$$

and

(13)
$$u + v\rho = (\rho^2 + \rho + 2)(2\rho^2 - 4\rho + 1)^n.$$

In (12) we get the condition $a_n = 0$ and, by lemma 4, n = 0 is the only solution since $13 \mid F(-4, -2)$, $\varepsilon^4 \equiv -4 \pmod{13}$, and $a_4 \equiv 26 \pmod{13^2}$. In (13) we have the condition $2a_n + b_n + c_n = 0$, which is impossible since $\varepsilon \equiv 1 \pmod{2}$.

$$y^2-21^2=x^3$$
. Solutions (-6, 15), (0, 21), (7, 28) and (42, 273).

- (1, 0, 0, 1) = 42 impossible modulo 9.
- (1, 0, 0, 2) = 21, (1, 0, 0, 3) = 14, (2, 0, 0, 3) = 7, (1, 0, 0, 14) = 3, (2, 0, 0, 7) = 3, (1, 0, 0, 21) = 2, (3, 0, 0, 7) = 2, (2, 0, 0, 21) = 1, and (3, 0, 0, 14) = 1 all impossible modulo 7.
 - (1, 0, 0, 6) = 7 (1, 1).
 - (1, 0, 0, 7) = 6 (-1, 1).
 - (1, 0, 0, 42) = 1 (1, 0), and no more by theorem 2 since (49, 0, 0, 6) = 1 is soluble.
 - (7, 0, 0, 6) = 1 (1, -1), and no more by theorem 2.
 - (1, 0, 0, 6) = 7. Then $\varrho^3 = 6$, and we get

(14)
$$u + v\varrho = (\varrho + 1)(3\varrho^2 - 6\varrho + 1)^n,$$

(15) $u + v\varrho = (2\varrho^2 + 4\varrho + 7)(3\varrho^2 - 6\varrho + 1)^n$

and

(16)
$$u + v\varrho = (\varrho^2 + \varrho - 5)(3\varrho^2 - 6\varrho + 1)^n.$$

Equation (14) gives $a_n + b_n = 0$, and this has the only solution n = 0 by lemma 3. In (15) we get the condition $7a_n + 4b_n + 2c_n = 0$ and in (16) $-5a_n + b_n + c_n = 0$, both of which are impossible modulo 3.

(1, 0, 0, 7) = 6. Then $\varrho^3 = 7$ and we only get

$$u+v\varrho = (\varrho-1)(2-\varrho)^n$$

with the condition $-a_n + b_n = 0$. Modulo 3 we find 3|n and

$$\varepsilon^3 = 6\varrho^2 - 12\varrho + 1.$$

Since 5 | F(-12, -6), $\varepsilon^{12} \equiv 1 \pmod{5}$, and $-a_{12} + b_{12} \equiv 10 \pmod{25}$, there are no more solutions by lemma 4.

$$y^2-22^2=x^3$$
. Solution (0, 22).

- (1, 0, 0, 1) = 44 no solution.
- (1, 0, 0, 4) = 11, (1, 0, 0, 11) = 4,and (4, 0, 0, 11) = 1all impossible modulo 9.

$$(1, 0, 0, 44) = 1$$
 $(1, 0).$

(1, 0, 0, 44) = 1. Then $\varrho^3 = 44$, but the field is defined by the form

(1, 5, 1, 3) with the corresponding fundamental unit $\eta = 5\theta^2 - 37\theta + 61$, where $\theta^3 - 5\theta^2 + \theta - 3 = 0$. In $R(\varrho)$ we get $\varepsilon = \eta^2 = -213\varrho^2 + 303\varrho + 1585$ and there is, according to lemma 3, no further solution.

$$y^2 - 23^2 = x^3$$
. Solution (0, 23).

(1, 0, 0, 1) = 46 no solution.

(1, 0, 0, 2) = 23, (1, 0, 0, 23) = 2 and (2, 0, 0, 23) = 1 all impossible modulo 9.

$$(1, 0, 0, 46) = 1$$
 $(1, 0).$

(1, 0, 0, 46) = 1. We have $\varrho^3 = 46$ and $\varepsilon = 309\varrho^2 + 48\varrho - 4139$, i.e. no further solution by lemma 3.

$$y^2-24^2=x^3$$
. Solutions (-8, 8), (0, 24) and (160, 2024).

(1, 0, 0, 1) = 48, (1, 0, 0, 3) = 16 and (2, 0, 0, 3) = 8 all impossible modulo 9.

$$(1, 0, 0, 2) = 24$$
 $(2, 2)$ and $(-10, 8)$.

$$(1, 0, 0, 6) = 8$$
 $(2, 0).$

(1, 0, 0, 2) = 24. Then $\varrho^3 = 2$ and, since (2) and (3) are cubes, we only get

$$u+v\varrho = 2(\varrho+1)(\varrho-1)^n$$

corresponding to the equation (1, 0, 0, 2) = 3, which occurred as an exception in theorem 2.

(1, 0, 0, 6) = 8. Then $\rho^3 = 6$ and (2) a cube gives

$$u + v\varrho = 2(3\varrho^2 - 6\varrho + 1)^n$$
,

and there is no further solution by lemma 3.

 $y^2-25^2=x^3$. Solutions (0, 25), (6, 29) and (75, 650).

(1, 0, 0, 1) = 50 and (1, 0, 0, 10) = 5 both impossible modulo 9.

(1, 0, 0, 2) = 25 (3, -1).

(1, 0, 0, 5) = 10 (-5, 3).

(1, 0, 0, 50) = 1 (1, 0), and no more by theorem 2, last part.

(1, 0, 0, 2) = 25. We have $\varrho^3 = 2$ and $5 = (\varrho^2 + 1)(-\varrho^2 + 2\varrho + 1)$, where $(\varrho - 1)(\varrho^2 + 1)^2 = 3 - \varrho$ and $(-\varrho^2 + 2\varrho + 1)$ is a prime of the second degree. We get

$$(17) u + v\varrho = (3 - \varrho)(\varrho - 1)^n$$

with the condition $3a_n - b_n = 0$, and

(18)
$$u + v\varrho = (-\varrho^2 + 2\varrho + 1)(\varrho - 1)^n$$

with the condition $a_n + 2b_n - c_n = 0$. In (17) we find 3|n and

$$3a_3 - b_3 \equiv -3 \pmod{9},$$

i.e. n=0 gives the only solution by lemma 3. Further $\varepsilon^8 \equiv 1 \pmod{5}$, and (18) is impossible modulo 5, as is shown by examining n modulo 8. As stated in this paper just before lemma 1, we also find (18) impossible since the congruence (6), i.e. $u^3 + 2 \equiv 0 \pmod{25}$, is satisfied by $u \equiv -3 \pmod{25}$, but not otherwise modulo 5, though $-\varrho^2 + 2\varrho + 1$ is a divisor of 5.

(1, 0, 0, 5) = 10. Then $\rho^3 = 5$, and we only get

$$u + v\varrho = (3\varrho - 5)(2\varrho^2 - 4\varrho + 1)^n$$

with the condition $-5a_n+3b_n=0$. Since $13 \mid F(4,2)$, but $13 \nmid F(5,-3)$, $\varepsilon^4 \equiv -4 \pmod{13}$ and $-5a_4+3b_4 \equiv 13 \pmod{13^2}$, n=0 gives the only solution by lemma 4.

Finally I will complete my dissertation (Hemer [3]), in the case $y^2 - 6^2 = x^3$, the equation (1, 0, 0, 3) = 4 (p. 28) by

$$u+v\rho = (\rho^2+\rho+1)(\rho^2-2)^n, \quad a_n+b_n+c_n = 0$$

and in the case $y^2 - 10^2 = x^3$, the equation (1, 0, 0, 5) = 4 (p. 31) by

$$u + v\varrho = (3\varrho^2 + 5\varrho + 9)(2\varrho^2 - 4\varrho + 1)^n, \qquad 9a_n + 5b_n + 3c_n = 0$$

and these relations are both impossible modulo 2.

BIBLIOGRAPHY

- B. Delaunay, Sur le nombre des représentations d'un nombre par une forme cubique binaire à discriminant négatif, C. R. Acad. Sci. Paris 171 (1920), 336-338.
- B. Delaunay, Über den Algorithmus der Erhöhung, J. Soc. Phys. Math. Léningrade 1 (1927), 257-267.
- 3. O. Hemer, On the Diophantine equation $y^2 k = x^3$, Dissertation, Uppsala, 1952.
- 4. O. Hemer, Notes on the Diophantine equation $y^2-k=x^3$, Ark. Mat. 3 (1954), 67-77.
- 5. L. J. Mordell, The Diophantine equation $y^2 k = x^3$, Proc. London Math. Soc. 13 (1913), 60-80.
- T. Nagell, Solution complète de quelques équations cubiques à deux indéterminées,
 J. Math. Pures Appl. (9), 4 (1925), 209-270.
- T. Nagell, Darstellung ganzer Zahlen durch binäre kubische Formen mit negativer Diskriminante, Math. Z. 28 (1928), 10-29.
- T. Nagell, L'analyse indéterminée de degré supérieur, Mémor. Sci. Math. 39 (1929),
 1-63.

- 9. Th. Skolem, Anwendung exponentieller Kongruenzen zum Beweis der Unlösbarkeit gewisser diophantischer Gleichungen, Avh. Norske Vid. Akad. Oslo, I, Mat.-Naturv. Klasse, 1937, No. 12, 1-16.
- Th. Skolem, Unlösbarkeit von Gleichungen, deren entsprechende Kongruenz für jeden Modul lösbar ist, Avh. Norske Vid. Akad. Oslo, I, Mat.-Naturv. Klasse, 1942, No. 4, 1–28.

LINKÖPING, SWEDEN