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PROBLEMS ON CONVEX BODIES

H. BUSEMANN and C. M. PETTY

The theory of Minkowski spaces leads to various problems concerning
the plane sections through the center of a symmetric convex body.
Many of these problems share with questions in number theory the great
appeal of being understandable to a layman (at least in three dimensions)
without being easy. Contributions to these problems would not only
advance the theory of Minkowski spaces, but lead the way to a new direction
of research on convex bodies.

This note lists some of the problems, stating what is known about
them (if anything), and interpreting them in terms of Minkowskian
geometry. These interpretations presuppose familiarity with the con-
cepts created by one of the authors in [4] and may be omitted by readers
interested only in convex bodies.

The following notations will be used throughout. We consider an
n-dimensional euclidean space E", =3, with rectangular coordinates
Zy, ..., %, whose origin is denoted by z. The symbol » will always stand
for a unit vector with origin z and components u,, ..., u,. The end
point of u traverses the unit sphere 2. If f(u) is positive and defined
on 2 the “surface uf(u)” is given by the equations

x, = f(Ugy ..., u,), UER.

The hyperplane X'z,u,=Xz,(—u,)=0 is denoted by H(u) or H(—u).
K is a convex body with z as interior point and center; V is the volume
of K. The intersection of K and H(u) is K(u) and A(u) is the (n—1)-
dimensional measure or area of K(u).

The first problem refers to two such convex bodies K and K’ with
center z. Let ¥V’ and A’(u) be defined for K’ as V and 4(u) for K.

ProBLEM 1: Does A'(u) S A(u) for all ue Q imply V' <V 1
The answer is affirmative if K’ is an ellipsoid because, see [5],

1) Prlz g nety  -mp-l SA(u)” do,
2
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with equality only when K is an ellipsoid. Here »,==*2/I"(v/2+1)
(equal to the volume of the solid unit sphere in £”) and dw,, is the area ele-
ment of 2 at w. The only other known special case is when A’(u)=c4(u)
for all ue£2. It then follows from Funk’s spherical integration theorem,
see [2, pp. 136-138], that K’ and K are homothetic.

This problem is equivalent to the following question on area in Min-
kowski spaces: Let F(x—y), F'(x—y) define two Minkowski metrics in
En (i.e. F(x) satisfies the conditions:

F(x) > 0forz + (0,...,0), F(uzx)= |p|F(x), F(x)isconvex;

similarly for F’(x), compare [6, p. 100]). If for some r, 2<r<n-—1,
the area of any (sufficiently smooth) r-dimensional surface with respect
to the metric ¥ does not exceed its area with respect to F’, does
then the same hold for s-dimensional surfaces with s>r? The answer
is, in general, negative for s <r, even when both metrics are euclidean,
i.e. K and K’ are both ellipsoids, and is trivially affirmative if r=1,
because then K' < K.

The inequality (1) states that the ellipsoids maximize 71" {, A(u)" dw,,.
This suggests

ProsLEM 2: To find a convex body K (with center z) which minimizes
yi-n SQ Au)* dw,.

The greatest lower bound of this expression is positive (see [5, p. 11])
and the existence of K can be deduced by an affine form of Blaschke’s
Selection theorem.
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It is doubtful whether the solution of this problem would have inter-
esting applications in Minkowskian geometry (unless the answer is an
interesting body). However the following modification is important:

ProBLEM 3: To find an estimate from above for V in terms of A(u) such
that the equality sign characterizes the ellipsoids.

Experimenting with this problem led the authors to conjecture that
such an estimate exists but involves the partial derivatives of

Au) = A(uy, ..., u,) .

Any characterization of the ellipsoids is significant for Minkowskian
geometry because it means a characterization of the euclidean geometry.
A solution of Problem 3 would, most likely, in addition give important
information about the solutions of the isoperimetric problem, which are
the surfaces homothetic to the polar reciprocal of the surface u.A(u)
with respect to . These surfaces are, in general, not homothetic to the
spheres (i.e. to the boundary of K), see the comments after Problem 5.
However, they play in many Minkowskian theorems the role of spheres
in the analogous euclidean theorems, see [4].

The inequality (1) implies further that

Vel z %, " 2%, =" n~!min, A(u)*
with equality only for spheres, which therefore yield

maxmin, 4(u)* Pi-n .
This leads to

ProBLEM 4: Which K yields mingmax, 4 (u)" Vi-n?

(The corresponding minmin and maxmax problems obviously have

no solution.)
An affirmative answer to Problem 1 in the case where K is a sphere

would solve Problem 4. For putting

r*1 %, , = max, 4'(u),
we would have
Hp_ ", < max 4 (u) (V)1

for all K’ so that Problem 4 would be solved by spheres. Its significance
for Minkowskian geometry concerns again the solutions of the isoperi-
metric problem. The answer to Problem 4 would in particular decide
the question whether the so-called isoperimetrix, i.e. the solution of the
isoperimetric problem with center z and Minkowski area equal to n times
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its Minkowskian volume, can be properly contained in the unit sphere K.
Problem 6, which is related to Problem 4, would also settle this question.

For a given u we construct the cone of maximal volume C(u) with base
K(u) and apex in K. The apex of such a cone is any point of K on a sup-
porting plane of K parallel to H(u).

ProBLEM 5: Are the ellipsoids characterized by the property that C(u) is
constant (i.e. independent of u for fixed K)?

This problem is of particular interest owing to its connection with
certain well known results of Radon [8] and Blaschke [1]. Radon dis-
covered in [8] that symmetry of perpendicularity for lines in a Minkow-
ski plane does not imply that the metric is euclidean. The plane geome-
tries with symmetric perpendicularity are exactly those with unit circles
for which the triangles, corresponding to C(u), have constant area, see
[4] and [6, p. 104]. Blaschke [1], compare also [6, p. 103], showed that
symmetry of perpendicularity for lines in a Minkowski space of dimen-
sion 7 =3 implies that the metric is euclidean. This seemed to indicate
that there is no analogue to Radon’s curves in higher dimensions. How-
ever, in [4] it is shown that there is a natural way of defining perpendic-
ularity of a line to a hyperplane and of a hyperplane to a line. The K
with constant C(u) are exactly those, which as unit spheres of Minkow-
gkian geometries lead to the case where the two pairings between lines
and hyperplanes are identical. Moreover, the surface »C(%)-! is a solu-
tion of the isoperimetric problem, so that Problem 5 also inquires whether
in higher dimensional Minkowskian geometries, other than the euclidean,
the solutions of the isoperimetric problem can be homothetic to the
spheres.

ProBLEM 6: T'0 find a convex body for which V-1 max, C(u) 18 minimal.

The corresponding min min and maxmax problems are simple and are
solved by cylinders and double cones. The maxmin problem is also un-
solved for higher dimensions, but in the plane it is solved by regular
affine hexagons, see [7].

It is shown in [7] that the ellipse solves Problem 6 in two dimensions,
so that the ellipsoid may be conjectured as answer to this problem. In
terms of Minkowskian geometry the problem means: for each Minkow-
skian geometry we consider the maximum of the Minkowski sine between
line and hyperplane, find the Minkowskian geometries for which this
maximum is minimal.

ProBLEM 7: Find a convex body K for which the integral \o A(u)=! ds,,
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18 minimal, where ds, is the area element of the boundary 0K of K at
a point of contact of a tangent plane parallel to H(u).

For 2 dimensions, the anwer is a regular affine hexagon, see [7].
The corresponding maximum problem is solved by the parallelepiped. For
a sketch of the proof, let E(u) be the supporting function of K. Then,
since 4 (%) is maximal among the areas of parallel sections of K normal
to u, we have

SA(u)—l ds, = SE(u) [E(w)A(u)] ds, < 2V—1SE(u) ds, = 2n.
oK 7 0K

To find the condition on K for equality, we observe that there can be at.
most 2n distinct tangent planes to K for which E(u)A(u)=V/2. But
since this condition must hold for almost all points of 0K, K is a poly-
hedron with at most 2n faces. However, all polyhedra with center have:
at least 2n faces and the only polyhedron with center and 2x faces is a
parallelepiped.

The Minkowskian interpretation of Problem 7 is to find a Minkowski
metric for which the area of the unit sphere is minimal.

The difficulty in all these extremal problems derives from the fact
that none of the symmetrization processes can be applied, because they
do not transform plane sections into plane sections.

ProBLEM 8: Are the ellipsoids characterized by the fact that the Gauss
curvature at a point of contact with a tangent plane parallel to H(u) is
proportional to A(u)-+D ¢

The answer is affirmative for two dimensions. The Minkowskian in-
terpretation involves the Minkowski curvature of surfaces and asks:
is the geometry euclidean if the Minkowski spheres have constant curva-
ture?

For a given point p on the boundary 0K of K, determine % such that.
the cone with apex p and base K(u) has maximal volume (in general
p is not an apex of C(u)). Call P(u) the (n—1)-dimensional area of the
projection of K on H(u) parallel to the line pz. Clearly P(u)= A4 (u).

ProBLEM 9: Can the ratio P(u)/A(u) be constant for K that are mot
ellipsoids ?

If the value of this constant is one, the answer to Problem 9 is nega-
tive, because it is then merely a reformulation of Blaschke’s theorem,
see [1] and [6, p. 93], that the ellipsoids are the only convex bodies with
plane shadow boundaries.
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In the language of Minkowskian geometry with X as unit sphere, the
plane H(u) is normal to the line pz or pz is transversal to H(u). The
ratio ,_, P(u)/A(u) is the area of the tranversal projection of K on H(u),
hence the analogue to the ‘“‘dussere Quermass’” of K in the euclidean
case, see [2, pp. 30-31]. Problem 9 inquires whether in a Minkowskian
geometry, other than the euclidean, a sphere can have constant ‘“‘iusseres
Quermass’. In Minkowski spaces, whose spheres solve Problem 9, there
is an analogue to Cauchy’s formula for area, see [2, p. 48], and hence to
its implications, in particular in integral geometry.

The last problem is of somewhat different nature. It is proved in [3]
that the surface w4 (u) is convex. Calling an r-dimensional linear sub-
space of E™ briefly an r-flat, our problem is this:

ProBLEM 10: If n=4 and 2<5r<n—1, does a result analogous to the
convexity of the surface uw A(u) hold for the sections of K by r-flats through z?

Here it is not even quite clear what the term ‘‘analogous’” may mean,
because the very formulation of convexity presupposes an underlying
linear range, whereas the r-flats through z fail to form a linear variety,
if 2<r<n—1. However, the following suggests itself: The convexity of
the surface ©A4(u) may be reformulated by introducing for an arbitrary
vector ¥ with origin z the function

Fw) = |v|[A(w/lv])* i v+ (0,...,0), F0O)=0.

Then F(v) is a convex function of v. Since F'(v) is positive homogeneous
of degree 1, the inequality

v

k k
F) = 34, F@) for v=3 22 120,
=1 =1

is equivalent to the convexity of F(v).

Introduce Pliicker coordinates p=(p,, ..., py) for the r-flats in E»
(since we only consider r-flats through 2, we may also use Pliicker
coordinates for the (r — 1)-flats in (n — 1)-dimensional projective space). If

N 1
ol = (2 we) =1,
J=1
denote by B(p) the r-dimensional area of the intersection of K with the
r-flat p through 2. If ¢ represents any r-flat through z put
F(q) = lgl B(¢/lgh* and F(0)=0.

The following appears then as a natural analogue to the convexity of the
gurface u.A(u):
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If ¢, and ¢, ..., ¢* represent r-flats through z and

E
q=2}~iqi» 4=z0,
i=1
then &
F() = %‘%F(qi)-

The question on Minkowski area which leads to Problem 10 is this:
A straight segment is a shortest connection of its endpoints in Minkow-
skian geometry. Let a sufficiently smooth surface §, homeomorphic to
an (r—1)-sphere, in an r-flat L, be given and bound in Z, the set W
homeomorphic to the solid r-dimensional sphere. The convexity of F(v)
implies, see [4], that the r-dimensional area of W is not greater than that
of any surface W’ bounded by S and homeomorphic to W, provided
W’ lies in an (r+ 1)-flat. (The last condition is automatically satisfied
for r=n—1.) Problem 10 inquires whether this statement remains true
without the last restriction.
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