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INTERSECTIONS OF TRANSLATES
OF CONVEX BODIES

OLOF HANNER

1. In n-dimensional Euclidean space let K be a convex body, i.e. a
compact convex set with interior points. Using a finite number of vectors
Uy, Ug, - - ., U, We translate K into the bodies K +u,, K +u,, ..., K +u,,.
In this paper we shall be interested in the following set-up:

(1) (K4+u)n (K+w) = @ (= the void set)
(2) N E+uw) =0,
k=1

i.e. though the bodies K +u;, pairwise meet, there is no point belonging
to all of them.

DEeriniTION. For a convex body K let I(K) denote the smallest integer
m such that there exist m vectors u,, u,, ..., u,, satisfying (1) and (2).
If there exists no such integer m let I(K)=ococ.

From the definition we immediately get I(K)= 3.

In this paper we are going to determine the value of I(K) for different
bodies K. I am indebted to B.v.Sz. Nagy for this problem. He has
proved [3], that if K is a parallelepiped then I(K)=oo, but that in all
other cases I(K)<n+1, where n is the dimension of the space. We are
going to sharpen his result by proving that, if K is not a parallelepiped,
then I(K) <4 and that I(K)=4 only for some convex polyhedra.

Main TureorREM. The number I(K) has the following properties.
A) I(K) is 3, 4, or .
B) I(K)>3 if and only if
1) K is a convex polyhedron,
2) K s centrally symmetric, and
3) for any two disjoint faces L, and L, of K there are two distinct
parallel supporting planes IT, and I1, of K such that L, <II, and L,<1II,.
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66 OLOF HANNER

C) I(K)=cc if and only if K is a parallelepiped (B. v. Sz. Nagy).
D) For each dimension n there are only a finite number of affinely
non-equivalent polyhedra K with I(K)> 3.

After some preliminaries given in section 2 we prove the Main Theorem
in sections 3-5. First we establish the necessity of the condition given
in B) for a convex body K to have I(K)>3. This is done in section 3,
where we also prove D). In section 4 we prove A) and C), and in section
5 we give the proof of the sufficiency of the condition in B).

We may change our main problem by studying not only translations
of K but general homotheties 4, K +u;, 4,>0, of K (cf. Nachbin [2]).
This will be done in section 6. It turns out that I(X) is also the mini-
mum number of pairwise meeting homotheties of K with void inter-
section.

In section 7, finally, we give some examples of polyhedra with I(K)> 3.
They are obtained out of lower-dimensional polyhedra by a general
method. All known polyhedra with I(K) > 3 are obtained by this method,
and for » <5 the method gives all possible polyhedra. Whether or not
this is true for arbitrary = is still an unsolved problem.

The simplest convex polyhedron K with I(K)=4 turns out to be the
regular octahedron.

2. We shall use vector notations in Euclidean n-space and shall not
strictly distinguish between points and vectors. The inner product
Ugy + . .« + Uy, of w=(uy, ..., u,) and z= (2, ..., x,)is denoted by uz.

If K is a set and u a vector we denote by K +u the set of all points
z+u with ze K. Similarly, if K, and K, are two sets, K, + K, denotes
the set of all points , +, with ;€ K, and z,e K,.

A linear manifold is defined as the set of points z satisfying a number
of linear equations u;x =a;. If the linear manifold is (n — 1)-dimensional
it is called a plane.

A supporting plane of a convex body K is a plane which intersects
K but does not intersect the interior of X. Two supporting planes of K
are called opposite if they are distinct and parallel.

Let K, and K, be two convex bodies. There are three possibilities.
First K; and K, may have interior points in common. Then there is a
positive number é such that, if « is any vector for which |u| <4, then
K,+u and K, have non-void intersection. Secondly K, and K, may
have only boundary points in common. Then they have a common
supporting plane containing K,;nK, and separating the interior of K,
from that of K,. Finally K,nK, may be void. In this case there is a
plane separating K; from K,.
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Lemma 2.1. Let I, and IT, be two opposite supporting planes of a con-
vex body K and let yeLy=KnII, and z€Ly,=KNnIl,. Then

(1) Kn(K+y—2)=LinLy+y—2) < Ii;.

Proor. Let II; be given by ux=a and II, by ux=>b, where a<b.
Then uy =a and uz=>5. For each point z of K we have a £ ux <b. Hence
for each point x of K +y—z we get

a = ux—-y+2)<b,
so that
2a—b Suwsa.
Hence all common points of K and K +y—z satisfy ux=a, i.e. they lie
in the plane I7;,. But KnIl,=L, and

(K+y—2)nll, = (K+y—2)n (lly+y—2) = Ly+y—=z.

This proves the lemma.

When a p-dimensional convex body is placed in Euclidean n-space,
it determines a p-dimensional linear manifold containing it. We shall use
the expressions interior point and boundary point of the body with
respect to this manifold.

A convex body is called a convex polyhedron if it is the convex hull
of a finite number of points. Equivalently it may be defined as a bounded
set which is the intersection of a finite number of half-spaces u;x<a,.
A supporting plane of the polyhedron K meets K in a subpolyhedron of
lower dimension called a face of K. A 1-dimensional face is called an
edge. The (n—1)-faces ((n— 1)-dimensional faces) together make up the
whole boundary of K.

Lemma 2.2. Let K, and K, be two convex polyhedra (not necessarily
n-dimensional). If there is no plane containing both K, and K, there is at
most one pair of parallel planes 11, and I1, such that K, <II, and K,<II,.

Proor. Suppose that there are two different such pairs of planes
11, I1, and I1,', I1,’. Then
K,<Ilinll and K,c<lIl,nll,.

But I7,n11,’ and II,nII,’ are two parallel (n—2)-dimensional linear
manifolds. Therefore there is a plane containing them. Thus this plane
contains K, and K,, and we have a contradiction.

Lemma 2.3. Suppose that there 18 no plane containing two given disjoint
convex polyhedra K, and K,. Let dim K, <n— 1, and assume that the linear

5.
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manifold determined by K, does not meet K,. Then there are two distinct
parallel planes IT, and 11, and a polyhedron K,' satisfying:

a’) K ICH 1»

b) K, =K,nIl,+9,

c) the open half-space bounded by II, containing IT, and K, contains
no point of K,,

d) there is one and only one pair of parallel planes containing K, and
K,', namely I, and II,,

e) no plane contains both K, and K,'.

Proor. Here d) is an immediate consequence of a), b), e), and Lemma 2.2.

Since the linear manifold determined by K, does not meet K,, there
are planes II; containing K, but not meeting K,. For each such plane
there is a unique parallel plane I7, satisfying b) and ¢). We still have
to get e) satisfied. For that purpose restrict the plane II; by requiring
that the dimension of K,”=K,nII, reaches its maximum. Then suppose
that K, and K,’ are contained in a plane /I. Since I contains points of
both I7; and II,, it is not parallel to these planes. Hence we have that
IInIl, and IINII, are (n — 2)-dimensional.

By assumption there is no plane containing X, and K,. Hence, since
IT contains K, IT does not contain K,. Therefore there is at least one
open half-space IT+ bounded by I7 which contains points of X,.

Now turn the two planes I7, and I7, around IInIl; and IInII, keeping
them parallel to each other. They are distinet and satisfy a), b), and c)
until either they become parallel to I7 (and therefore coincide) or the
plane I7, meets a point of K, outside K,’. Therefore if we turn the planes
in such a way that IT,nII+ moves towards K,nII+, which is non-void,
we may proceed with the motion until 77, contains some boundary
point of K, outside of K,'. However, this contradicts the fact that II,
was chosen such that dim (K,NnII,) reached its maximum. This proves
the lemma.

Before proceeding to the proof of our Main Theorem in the next three
sections, let us here make some simple remarks about the number I(K).

It follows immediately from the definition that I(X) does not change
if we replace K by an affine image.

When » =1 we have only one type of convex bodies, namely the closed
intervals. For them we have I(K)=oo. This follows from the following
lemma.

LemMA 2.4. Let there be given on the real line a finite number of pair-
unse meeting closed intervals [ay, by], LSk <m. Then they have a point in
common.
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ProoF. Put a=maxa; and b=minb,. Since [a;, b, ] meets [a,,, by,]
we have a; <b;,. Hence, since k, and k, are arbitrary, we get a<b,
and for any k£ we have

a,<azxbzbd,.
Thus a and b belong to all the intervals.
We get a similar result when n>1:

Lemma 2.5. Let K, ..., K,, be pairwise meeting n-dimensional paral-
lelepipeds with their (n — 1)-faces parallel to the coordinate planes. Then they
have a point in common.

Proor. Let K, be defined by

<by, 1=5i

IIA

A, = X n.

Keep ¢ fixed. Since K, meets K;, the interval [a,, , b, ] must meet
the interval [ay,, by,] Therefore, applying the preceding lemma, we
can take a value a; for which a,, <a,<b,, for all k&. This may be done
for each ¢. Then the point a=(ay, ..., q;, ..., a,) belongs to all K,.
This proves the lemma.

We close this section by giving an example of a polyhedron K with
I(K)=3, which will be of some interest in the sequel.

ExampLE 2.6. In Euclidean 6-space let K be the 5-dimensional poly-
hedron given by
(2) T+ 2+ 23+ 24+ +% = 0,
-3<z,£3, 1<is6.
Evidently K has the origin as its centre of symmetry. Let us deter-
mine its vertices. In a vertex at least 5 of the coordinates x; are 3 or
—3. Because of (2) the only possibility is that three x; are 3 and the

remaining three x; are — 3.
That I(K)=3 is seen by adding the three vectors

ul =( 4) 4: ""2: '—2’ '—2: _2)’
Uy = (—2, —2’ 4, 4-" _2, —2):
u3=("2’_23 _2, _2: 4’ 4),

lying in the plane (2). We get K, =K +u,, given by (2) and the inequali-
ties

K: 15a,2,57 Kyp:-5=52,2,<1, Kg:-b5=z,2,501,
-6 sxy, 2 =1, 12,2 =7, -5 < x,2, 51,
-5 S xg, g = 1, -5 =2 x5,x4 £ 1, 1 S z,24 7.
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Here K, and K, contain the point (1,1, 1,1, —2, —2) (and in fact a
whole common edge), so that K;nK,+d. Similarly K,nK;+9 and
KynKy+0. The only point, however, satisfying all inequalities for
K,, K,, and K, above is the point (1, 1, 1, 1, 1, 1), which does not lie in
(2). Hence K ,nK,nKy;=0.

3. A boundary point of a convex body K is called a point of strict
convexity if K has a supporting plane meeting K only in this point. It
is known (cf. [1, p. 88]) that every convex body has points of strict
convexity and that a convex body with only a finite number of points
of strict convexity is a polyhedron.

Tarorem 3.1. If I(K)> 3, K 18 centrally symmetric.

Proor!. Let ye K be a point of strict convexity and I1, a corresponding
supporting plane such that Knil,=y. Take the opposite supporting
plane 11, and a point ze K n1I,. Translate K into K +y—2. By Lemma
2.1 the intersection of X and K +y—=z lies in ;. The only point of K
in IT;, however, is y. Since y=2+ (y—2)eK +y—=z we get

.Kn(K+y—‘Z) =9.

The two points y and z therefore have the property that K —y and
K —2z have a single point in common. We shall show that if I(K)>3
this property implies that K has }(y+z) as centre of symmetry.

To simplify the notations let the origin be the point 3(y+z). Then
we have 2= —y. We know that K —y and K +y have a single point in
common, and since y and —y both lie in K the common point must be

the origin, i.e.
(K—y)n(K+y) =0.

Now let « be an arbitrary point of K. We have to prove that —xeK.
That xeK can be expressed by 0eK —x. Hence the three translates

K,=K-y, K,=K+y, K;=K-«x
have the origin in common. Now introduce K,=K +2z. Then
K, = Kg+x—y and K, =K,+z-y,
and since K, and K, meet, so do K, and K,. Similarly
Ky, = Kg+z+y and K, =K,+z+y,
é,nd since K, and K1 meet so do K, and K,. Since K; and K, meet we

. 1 An idea of Th. Bang has made it possible for me to simplify the proof of this theorem.
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therefore know that K, K, and K, pairwise meet. Hence, since I(K)> 3,
they have a common point. But 0 is the only common point of K; and
K,. Thus we must have 0e K, or, equivalently, —ac XK. This proves the
theorem.

Whenever I(K) > 3, and therefore K is centrally symmetric, two points
of K (or two faces of K, when K is proved to be a polyhedron) will be
called opposite if they lie symmetrically with respect to the centre of
symmetry of K.

TaeOREM 3.2. If I(K)>3, K s a polyhedron.

Proor. We are going to show that if K is a convex body with an
infinite number of points of strict convexity then I(K)=3. From this
it will follow that, if K is a convex body with I(K) > 3, then K must have
only a finite number of points of strict convexity and therefore must be
a polyhedron. Thus the theorem will be proved.

Let therefore y,, k=1, 2, ..., be an infinite sequence of distinct points
of strict convexity for K, and let 2, for each k be the point opposite to
Y. As in the proof of Theorem 3.1 we get

Kn(E+y,—2) = ¥y -

Since K is bounded we may assume that the sequences ¥, and z, con-
verge. Let k<[ and put

K,=K, K,=FK+y,—2, Ky=K+y—2.

Then

(1) KinK, =9, KnK;=y,
and, since y,+y,

(2) KinK,nKs=0.

Furthermore K;= K, +wu where

u=(U—Y)+(—-2),
and if » is small enough, K, and K, have common interior points. Hence,
since »—0 when k, ! > oo, we have for sufficiently large % and !
3) K,nK; +0.

But (1), (2), and (3) show that I(K)=3. This completes the proof of
the theorem.

THEOREM 3.3. Let K be a polyhedron with I1(K)>3. Then for any two
disjoint faces L, and L, of K there are two opposite supporting planes IT,
and I1, of K such that L,<II, and L,<II,.
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Proor. Let X be a polyhedron with I(K)>3. Assume that there exist
L, and L, satisfying 1) and 2) below.

1) L, and L, are two disjoint faces of K.

2) There is no pair of opposite supporting planes II, and I1, of K such
that Ly<Il, and L, II,.

We shall show that this assumption will lead to 7(K)=3, a contra-

diction which will prove our theorem.
Choose L, and L, such that

3) dim L, — dim L, is maximal under conditions 1) and 2).

Before proceeding with the proof let us point out two examples which
the reader may find illustrative in the rest of the proof. The first example
is the 2-dimensional body, the boundary of which is a regular hexagon.
Here L, will be a side and L, a vertex. The other example is the 5-dimen-
sional polyhedron given in Example 2.6. Here we may take as L, the
3-dimensional face defined by z; =3, ,=3 and as L, the 1-dimensional
edge joining (3, —3, —3, —3, 3,3) and (-3, 3, —3, —3, 3, 3).

Now let us continue the proof by concluding from 1), 2), and 3) several
facts about L, and L,.

4) Every face L, of K containing L, as a proper subset meets L,. .
For if L,'n L, is void, L," and L, satisfy 1). They also satisfy 2) since
a plane containing L, also contains L,. But
dimL,’-dimL, > dim L, —dim L,
contradicting 3).

5) Every plane II which contains L, and is disjoint to L,, is a supporting
plane of K.

For let II, be a supporting plane intersecting K in L,. Then, by 1),
11, is disjoint to L,. Therefore it is possible to turn a plane I7, from I7,
to II around the intersection II,nIT (which contains L,) so that 17,
never intersects L,. To prove 5) it will be sufficient to prove that in all
positions the plane I7, satisfies I7,n K = L, and therefore is a supporting
plane of K. When I7,=1I, we have in fact II,nK =L, and in general
at least II,n K> L,. If IT,n K + L, for some position of I7,, take the first
position for which this happens. II, is then still a supporting plane but
intersects K in a face having L, as a proper subset. Since this is impos-
sible because of 4), we must have IT,nK = L,.

6) There is no plane IT containing both L, and L,.
For, again, let IT, be a supporting plane meeting K in L;. Then I7,
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is disjoint to L,. Suppose that there is a plane II containing both L,
and L,. Let y be any point outside of 7I. Take the plane I7, containing
y and IInIl,. Then IInIl,=IInIl,. Since L,=II, we conclude

H20L2=H2F\HDL2CHIOL2=@.

But 7, contains L,. Hence, by 5), I1, is a supporting plane of K. Thus
y is not an interior point of K. The point y, however, was arbitrarily
chosen outside of 77, so that all interior points of K must lie in 7. This
is a contradiction since K is n-dimensional.

7) There is one and only one pair of parallel planes, I, and II,’, such
that Ly< I, and Ly<II,. II,' is a supporting plane of K, but I, is not
a supporting plane of K.

For, since L, and L, are disjoint faces of the same polyhedron, the
linear manifold determined by L, does not meet L,. Hence, because of 6),
we may apply Lemma 2.3. We get two distinct parallel planes I7," and
I1,’ and a polyhedron L, satisfying:

a) L1y,

b) Ly’ =L,nIl,' +0,

c¢) the open half-space bounded by I7," containing I7," and L, contains
no point of L,,

d) there is one and only one pair of parallel planes containing L, and
L', namely I1,’ and I1,’.

Let us show that L,’=L,. In fact, if L,’+L,, so that L, is not con-
tained in I7,’, we see from c) that I7,” is not a supporting plane of K.
Thus, because of d), L, and L, satisfy 2). Since they obviously also
satisfy 1), the fact that

dimZ, -dimZL," > dimL; —dim L,

contradicts 3). Hence L,’=L, and L,<I1,’.

It remains to be proved that I7,’ is a supporting plane of K and that
11 is not a supporting plane of K. The first fact, however, follows
readily from 5), and thereafter the second fact is a consequence of 2).
This proves 7).

By the aid of 1)-7) we shall now show that I(K)=3, contrary to the
assumption I(K)> 3.

By the central symmetry we have a unique face L; opposite to L,.
In each of the faces L, k=1, 2, 3, take an interior point z; (with respect
to the linear manifold determined by L,). Then a supporting plane of K
through x; contains L,. Consider
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K,=K-z+u, K,=K-z, K;=K-uz,,

where « is a small vector, still to be determined.

The origin lies in both K —, and K,=K —x,. If these two polyhedra
have no common interior point, they will have a common supporting
plane I7 through the origin. Then I +x, is a supporting plane of K con-
taining z; and therefore also I, and similarly IT + «, is a supporting plane
of K containing x, and therefore also L,. Since I7+z, and IT+z, are
parallel, this contradicts 2) or 6). This contradiction shows that K —a,;
and K, have in fact common interior points. Hence for sufficiently small
u also K; and K, have common interior points. In particular K;nK,+0.

Each supporting plane of K containing L, corresponds to a parallel
supporting plane containing L,. Therefore we may repeat the arguments
above and show, that if « is small enough, we also have K,nK,+0.
~ Let us find K,nK;. Since the origin belongs to this set, we have
K,nK;+0. Let us apply Lemma 2.1. Since L, and L, are two opposite
faces of K, there are two opposite supporting planes 17, and II; such that
L,=KnIl, and Ly=KnlIl,. Hence, by Lemma 2.1,

Kﬂ (K'I'xz—wa) < Lz
and, by the translation —x,,
.K2 n K3 < Lz—xz .

We translate the two planes /I, and I1,’ of 7) into IT," —x, and IT,’ —x,.
We get two parallel planes both of which contain the origin. Hence
they coincide. Since L, —xz,< I1,’ —x, we therefore obtain

K2 ﬂ .K3 < Hll—xl .

Now we get from 7) that I7,’—x, is a supporting plane of K —a;.
Hence by giving » a suitable direction we can assure that

Kl n (Ull"“xl) = g .

Hence
K nK,nK;=0.

With % so chosen the three translates K;, K, and K, show that
I(K)=3, contrary to our assumption I(K)> 3.

Hence for a convex polyhedron K with I(K)>3 there is, for any pair
of disjoint faces L, and L,, always a pair of opposite supporting planes
II, and II, such that L,<II, and L,<II,. This proves Theorem 3.3.

Theorems 3.1, 3.2, and 3.3 together prove that the condition given in
B) of the Main Theorem is necessary for I(K) > 3.
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CoroLLARY 3.4. If I(K)>3, any two opposite (n—1)-faces together
contain all vertices of K. .

Proor. Let L, be an (n—1)-face and L, a vertex not contained in L,.
By Theorem 3.3 there are two opposite supporting planes 17, and I7,,
such that L,<II; and L,<1],. Since L, is (n—1)-dimensional, we have
L, =KnlII,. Therefore the face opposite to L, is K nIT,, which contains L,.

Proor oF D) or THE MAIN THEOREM. By Theorems 3.1 and 3.2 we
know that, if I(K)>3, K is a centrally symmetric polyhedron. Take »
linearly independent supporting planes of K, each meeting K in an
(n—1)-face. Make an affine transformation so that the centre of symme-
try is the origin and these n planes are the planes z;=1,1<¢<m, in an
orthogonal coordinate system. The opposite planes then have the
equations #;= —1, 1 <i<n. Denote the cube {x| -1=z;<1} by C.

Take an arbitrary vertex of K. By Corollary 3.4 this vertex must,
for each ¢, lie in the plane z;=1 or in the plane ;= — 1. Hence it has
all its coordinates equal to 1 or —1. Hence it is a vertex of C.

Thus we have shown that any n-dimensional convex polyhedron with
I(K) >3 is affinely equivalent to the convex hull of some of the vertices
of a fixed cube. Therefore there can exist only a finite number of affinely
non-equivalent polyhedra with I(X)> 3.

REMARK 3.5. We know that for n=1 we always have I(K)=o0. Let
us consider n=2. Take some vertices of a square. 1f we take one or two
vertices, the convex hull is not 2-dimensional, and if we take three
vertices, the convex hull is not centrally symmetric. Hence, except the
square and its affine images, which have I(K)= oo, all 2-dimensional
convex bodies have I(K)=3 (in accordance with B. v. Sz. Nagy’s result
I(K)<n+1). The same arguments show for n=3 that if there is some
K with I(K)> 3 which is not affinely equivalent to a cube, it has to be
affinely equivalent to a regular octahedron.

REMARK 3.6. Let us consider centrally symmetric convex polyhedra
having the property described in Corollary 3.4: Any pair of opposite
(n—1)-faces together contain all vertices. An inspection of the proof of
D) of the Main Theorem shows that there are only a finite number of
affinely non-equivalent polyhedra of this type. Among them we have
all K with I(K)> 3. However, some of them have I(K)=3. An example
of such a polyhedron is the 5-dimensional polyhedron given in Example
2.6. There is no such polyhedron for »=<4.

4. Now we know enough about the consequences of the assumption
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I(K)>3 to be able to prove A) and C) of the Main Theorem. Since we
see from Lemma 2.5 that a parallelepiped has I(K)= oo, it will be suffi-
cient in order to prove both A) and C) to prove the following theorem.

THEOREM 4.1. If I(K)>3 and K 8 not a parallelepiped, then I(K)=4.
The proof depends on a lemma. '

LeMMA 4.2. If an n-dimensional convex polyhedron L is not a simplex,
we can find some vertex y of L and some point z belonging to an (n— 2)-face
of L such that the segment from y to z contains interior points of L.

Proor. Since L is not a simplex it has more than n+1 vertices. Take
n+ 1 vertices of L spanning an n-dimensional simplex and let ¥ be one
of the remaining vertices of L. Then the convex hull of the set of all
vertices of L except y is m-dimensional. Therefore, if we let M be an
(n—1)-face of L not containing y, there is some vertex y'+y of L not
contained in M. I claim that for some point z in the boundary of M the
segment from y to z contains interior points of L.

In fact let H be the convex hull of y and M. Assume that all segments
from y to the points zebdry M belong to bdryL. Then, since bdryH
consists of all these segments together with M we have

bdryH < bdryL.

Hence, since H and L are both n-dimensional convex bodies, we con-
clude H=L. The point ', however, is a vertex of L, and since H is the
convex hull of some other vertices of L, ¥’ is not contained in H. Hence
we cannot have H =L. This contradiction shows that for some point z
of bdry M the segment from y to z contains interior points of L. Since
a boundary point of M lies in some (n—2)-face of L, this proves the
lemma.

Let us point out that the regular octahedron provides an illustrative
example for the proof that follows.

Proor oF THEOREM 4.1. Let K be an n-dimensional convex body with
I(K)>3. Assume that K is not a parallelepiped. Then by Remark 3.5,
n23. Since I(K)>3, we get from Theorems 3.1 and 3.2 that K is a
centrally symmetric polyhedron. Hence, since K is not a parallelepiped,
its number of (n— 1)-faces is greater than 2n. Let x, be a vertex of K.
Because of Corollary 3.4, one of each pair of opposite (n— 1)-faces con-
tains x,. Therefore the number of (n—1)-faces containing x, is greater
than n.

Cut K with a plane /7 separating « from the remaining vertices of K.
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Put L=KnIl. Lis (n—1)-dimensional, and since the number of (n—1)-
faces of K which contain #; is greater than =, the number of (n — 2)-faces
of L is greater than n. Hence it is not a simplex. Apply Lemma 4.2 to L.
We get a vertex y of L and a point z belonging to an (n— 3)-face of L,
where the segment from y to z contains interior points of L (with respect
to II). All interior points of L are interior points of K. Thus the seg-
ment from y to z contains interior points of K.

From the fact that II separates z, from the remaining vertices of K,
we conclude that the two segments from x, to ¥ and 2 can be continued
in K beyond y and z respectively. Hence a supporting plane of K contain-
ing y or z must contain x,. From this it follows that, if two supporting
planes of K contain y and z respectively, they cannot be parallel. For
both of them must contain z,, so that if they are parallel they must coin-
cide. But then they both contain y and z and therefore the whole segment
from y to z. This segment, however, contains interior points of K.
Therefore it cannot lie in a supporting plane.

Furthermore, since ¥ is a vertex of L, y belongs to an edge L, of K
containing x, and since z belongs to an (n — 3)-face of L, z belongs to an
(n—2)-face L, of K containing z,.

Now consider the four translates of K:

Ki=K-y, Ky,=K-y, K;=K-z2+u, K, =K-2'+u,

where ¢’ and 2’ are the points of K opposite to y and z respectively, and
% is a small vector. Let us show that % can be determined such that X,
K,, K;, and K, pairwise meet but have void intersection.

First consider the intersection of X, and K,. Since K, and K —z have
the origin in common they have non-void intersection. As proved above
there is no pair of parallel supporting planes of K containing ¥ and z
respectively, neither distinct nor coinciding. Therefore no plane through
the origin can be a supporting plane of both K—y=K, and K-—z.
Hence K, and K —z have common interior points, and for sufficiently
small » we have K;nK,+d.

Since a supporting plane of K through y’ or 2’ corresponds to a parallel
supporting plane through the opposite point y or 2z, the arguments
above also show that for sufficiently small v we have K,nK,+4,
K,nKy;+0, and K,nK,+0.

The origin is contained in K, and K,. Hence K,nK,+¢. Similarly,
% is contained in K, and K,, so that K;nK,+0.

Since y and ¥’ are opposite boundary points of the centrally symmetric
polyhedron K and y is contained in L,, we get from Lemma 2.1

KnK+y-vy')< L,.
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Hence, by adding the vector —y,
K.nK,<c Li—y.
Similarly, since z and 2’ are opposite and z is contained in L,,
Kn(K+z-2') < L,,
and, by adding the vector —z+u,
K;nK,< Ly,—z+u.

Determine u such that L, —y and L,—z+u are disjoint. This is possible
with arbitrarily small ». In fact L~y and L,—2z both contain the
origin, and the sum of their dimensions is n—1. Hence they are con-
tained in a plane. If u is not parallel to this plane, L, —y and Ly,—z+u
are disjoint. With » so chosen

K, nK;nKynKy < (Li—y)n(Ly—z+u) = 0.

Hence we have shown that K,, K,, K; and K, pairwise meet but
have void intersection. This proves I(K)<4. Since I(K)>3 we get
I(K)=4. This proves Theorem 4.1.

5. In this section we shall prove that the condition given in B) of the
Main Theorem is sufficient for a convex body K to have I(K)>3. This
is done by proving the following theorem.

TeEOREM 5.1. If K 18 a centrally symmetric n-dimensional polyhedron
with I(K)=3, then there are two disjoint faces L, and L, of K such that
there is no pair of opposite supporting planes II, and IT, with L,<II,
and Ly<I1,.

We need a lemma.

LeMMma 5.2. Let M,, M,, and M, be three compact convex sets in Eu-
clidean n-space and suppose that dim M, =dim M,=n. If M\, M,, and M,
pairwise meet but have void inmtersection, there is a translate M, +u of
M, such that also M, +u, M,, and Mz pairwise meet and have void inter-
section and that, furthermore, M,+u and M, have no common interior
point.

Proor. Take a point y in M,nM,. Since M,nM,nM, is void, we can
separate M, from y by a plane I7;. Choose the coordinate system such
that 17, has the equation vx = 0 and such that vy > 0. Then if I7,~ denotes
the open half-space vz <0, we have M,<II;~. Similarly, let II;+ denote
the open half-space vz > 0, which contains y.
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Now we move M, by adding a vector =wu(t), ¢ = 0, which is continuous
in the variable ¢{. During this motion we want to have

(1) yeMl"'u’
so that Myn(M,+ %)+, and we want to have
(2) (M1+u)nM2nM3=0.

We are going to choose %(t) such that 4(0)=0, and such that for some ¢
we have (M, +u(t))nM,=0. Then, since u(t) is continuous, there will
be a t such that M, +wu(¢) and M, meet but have no common interior
point, and the lemma will be proved. Starting with u(¢)=0 we define
u(t) successively for the intervals k<t<k+1, k=0, 1, ..., until we reach
an integer %k such that M, +w(k) and M, are disjoint. For each k let
u(t) vary linearly from (k) to a suitably chosen u(k+1). We require

(3) v(u(k+1)—u(k)) 2 vy .
If (3) is satisfied for all k¥ we have, since u(0)=0,
vu(k) = k(vy) .

Hence, since M, and M, are bounded and vy >0, M, +u(k) and M must
be disjoint for sufficiently large k.
Therefore, let u(k) be given such that u=w(k) satisfies (1) and (2) and

(4) (My+u(l)) n My + 0.

Then, in order to complete the proof of the lemma, we have to find
u(k+1) such that (3) is satisfied and that (1) and (2) are satisfied for all
u on the segment from wu(k) to u(k+1).

Because of (2) for u=wu(k), we may separate M,n M, from M, +u(k) by
a plane I7,, which we choose not parallel to I7,. Denote by II,* the open
half-space bounded by II, containing M,+wu(k) and by II,~ the open
half-space bounded by I7, containing M,n M.

Let us now turn a plane I7 around I7,nII,. Starting with the position
IT,, the plane IT shall move so that one of the two half-planes in which
II,n11, divides IT is contained in IT,*nIl,~, where it meets neither
M, +u(k) nor M,n M,. Then the other half-plane is contained in I7,-nIT,*
and does not meet M,NM;. Now M,<II,~, and M, +u(k)<II,*. Hence,
because of (4), there are points of M, +wu(k) in II,-nIT,*. We turn IT
until the half-plane of IT in IT,~nIl,+ meets M, +u(k). Then we get a
supporting plane IT, of M,+wu(k) separating the interior of M, +u(k)
from M,nM;. We can take a point z in ITyn (M, +u(k))n 1T,

Now put w(k+1)=u(k)+y—=. Then, since zell,~, we have
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v(u(k+1)—u(k)) = v(y—2) > vy,

which proves (3). Since both y and z lie in M, +u(k), we have for each

A 0511,
1-Ay+ize M, +uk).

Hence
yeM,+ull)+Ay—=2),

proving (1) for all points « on the segment from (k) to w(k+1). Finally,
since II; is a supporting plane of M, +w(k) and since zell; and
yeM, +u(k), the two bodies M, +u(k) and M, +u(k)+A(y—2) for 1>0
are contained in the same closed half-space bounded by I7,. But M,n M,
is contained in the complementary open half-space. This proves (2) for
all » on the segment from w(k) to w(k+ 1).

This completes the proof of the lemma.

ProoF orF THEOREM 5.1. Since I(K)=3 we can take three translates
K,, K,, and K, of K pairwise meeting but with void intersection.

Assume that K, and K, have no common interior point. Let y be
the midpoint of the segment connecting the centers of K, and K,.
Since K, and K, are translates of each other and centrally symmetric,
K, is symmetric to K, with respect to y. Hence the intersection K, n K,
is symmetric with respect to y, and since K;nK, is convex and non-
void, yeK;nK, Hence, since K, and K, have no interior point in
common, ¥ is a boundary point of both K, and K,.

Let M, and M, be the faces of K, and K, respectively containing y
as an interior point. By symmetry a supporting plane I/ of K, through
y intersecting K, in M, is a supporting plane of K, intersecting K, in
M,. The plane I separates the centers of K, and K, hence also the
interiors of K, and K,. Therefore

K.nKy=M,nM, < II.

M, and M, are symmetric to each other with respect to y, and
yeM,nM, Hence M; and M, have the same dimension, say m, and
they both determine the same m-dimensional linear manifold A.

Now among all possible K, K,, and K, pairwise meeting and having
void intersection let us take K,, K,, and K3 such that dim (K, nK,) is
as low as possible. Then, because of Lemma 5.2, K, and K, will have
no common interior point, and we have with the notations above

m = d.im(Mlan) = dim(Kan2) .

Let us prove that if m is minimal, then K;n A =4.
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In fact, put My;=K;nA and suppose that M, is non-void. There will
be two cases to consider:

a) M, meets both M, and M,,
b) M, is disjoint to at least one of M, and M,, say M,.

In both cases we shall get a contradiction by showing that we can
move K,; by adding a vector u parallel to /A such that K; +u meets K,
and K, but not K,n K, and such that dim ((K, +u)nK,) <m.

When # is parallel to A, it is also parallel to the plane II. Hence I7
separates the interiors of K,+w and K,, so that (K,;+wu)nK, is con-
tained in 71. Since K,nII=M,< /A, we get

(5) (Ki+u)n KycA.

a) M, meets M, and M,. Since M,, M, and M, are subsets of K,,
K,, and K, respectively, their intersection is void. Hence, since M, and
M, have in A the point y as common interior point, we can apply Lemma
5.2t0 M,, M,, and M,in A. We get a vector » parallel to A such that
M, +u meets M, and M, but not M,nM; and that

dim (M, +u) n M) < m .

Then K, +u meets K, and K;. Since u is parallel to 4, we get from (5)
that
(Ky+u)n Ky = (Ey+u)nd)n (Kynd) = (My+u)n My,
so that
(6) dim (K, +u)n Kp) < m .
Finally, because of (5),

(7) (Ki+u)nKyn Ky = (Ky+u)nA)n (Kynd)n (KgnA)
= (M, +u)nMyn My =0.

b) M, is disjoint to M, In A separate M, and M; by an (m—1)-
dimensional linear manifold A’. It divides /1 into two parts; the part
of A (taken closed) containing M, is called A+. Let y’ be an arbitrary
point in M,. Since M, is disjoint to A+ but meets M, there are points
of M, outside of A+. Let z be such a point with a maximal distance to
A’'. Then M,+ (y' —z) is contained in A+ and it is therefore disjoint to
M,. Put u=A(y' —2), where 0<A<1. Then we can take such a 1 that
M, +u and M, meet but have no common interior point. Then K, +u
meets K, and, as in case a), we get (6) and (7). It remains to be proved
that K, +u meets K;. Let 2’ be any point in K;nK,. Then K, contains
2 and 2’ and therefore also Az+ (1—A)z’, and K, contains ¥’ and 2’ and
therefore also Ay’ + (1—4)z'. Hence K, +u and Kj both contain the point

Math. Scand. 4. 6
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A2+ (1= +u = Ay +(1-2)2" .

This proves the case b).

From now on let m be minimal so that we have K;n4=0. Hence,
since M, is a face of K, and therefore dim M, <n—1, we are now able
to apply Lemma 2.3 to M, and K;. We get two distinct parallel planes
I1," and IT," such that

a) M,<Ii)’,

b) Ky'=K3nlil,' 0,

c¢) the open half-space bounded by I7,’ containing I7," and M, con-
tains no point of K,

d) there is one and only one pair of parallel planes containing 3/, and
K,', namely 11, and II,'.

By b) and c¢) we get that I7,’ is a supporting plane of K;. Hence K’
is a face of K;. Let us prove that /7,’ is not a supporting plane of K,.
In fact I7,’ contains M, by a) and therefore the point y. Hence, if I7,’
is a supporting plane of K, it is also a supporting plane of K, and sepa-
rates the interiors of K; and K,. But this is impossible. For by c¢) K,
lies in one of the open half-spaces bounded by I7;’, and since K; meets
both K, and K,, the bodies K; and K, both have points in the same
open half-space bounded by I7,’. Hence their interiors cannot be sepa-
rated by II,’. Thus II,’ is not a supporting plane of K.

Finally suppose that we have K;=K +wu,; and K;=K+u,;. We put

Li=M,—u, and L,= K;/—u,.

I claim that L, and L, are disjoint faces of K such that there is no pair
of opposite supporting planes II; and II, with L, <], and L,<II,.

Since M, is a face of K, and since K’ is a face of K,, we see that L,
and L, are faces of K. Since L, is a translate of M, and L, a translate
of K,', we get from d) that there is only one pair of parallel planes
containing L, and L,. These planes are II,"—u, and II,"—u,. Since I7,’
is not a supporting plane of K +u,, the plane II,’ —u, is not a supporting
plane of K, and since [I," is a supporting plane of Kj, the plane I7,’ —ug
is a supporting plane of K. Thus we see that II,'—u, and IT,’ —u; are
distinct planes. Since they are parallel and contain L, and L, respec-
tively, L, and L, are disjoint. Since II,’ —u, and IT,' —u, are the only
pair of parallel planes containing L, and L, respectively, and I, —u,
is not a supporting plane of K, Theorem 5.1 is proved.

We have now completely proved the Main Theorem.

6. In this section we shall change our main problem. Instead of
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translates of a convex body K we shall consider bodies 1K + % homothetic

with K, where A>0. Consider numbers 4,,...,4,>0 and vectors
Uy +« oy Uy. Let us have
(1) (K +w)n (AK+w) + 0,
m
(2) ﬂ WK +w) = 0.

DreriniTION. For a convex body K let I'(K) denote the smallest
integer m such that there exist m numbers 4,, ..., 4, >0 and m vectors
Uy, - . ., Uy, satisfying (1) and (2). If there exists no such integer m let
I'(K) = oo,

THEOREM 6.1. For any convex body K we have I(K)=1'(K).

Proor. Since we can choose all 4,=1, we have I'(K) < I(K). There-
fore we have to show that if I'(K)=m with m finite, then I(K)<m.

Let A, and w; be chosen satisfying (1) and (2), where 1<k <m and
m=1'(K). Let 4, be a number for which A, <4, for all 4. I claim that
for fixed k we can change 4, and %, in such a way that (1) and (2) are
still satisfied and the new 1, is equal to 4,, When this is proved, we
complete the proof of the theorem in the following way. We change
successively for each k=1, ..., m the number 4, and the vector u;, so
that we get A, =4,, and keep each time all the remaining 4, and w, fixed.
After m steps we have A, =4, for all k. But then the sets 1,K +u, show
that I(2,K) <m. Since obviously I(4,K)=1(K), we have I(K)=<m.

Therefore we only have to show that we can change 4, and u, as
described above. Put

Kk == le-l-uk arnd L = n (Z,K—I-ul) .
l+k

Since I'(K)=m, we must have L+d. By (2), K, and L are disjoint,
and we can separate them by a plane I7. Let z be a point in K, with
minimal distance to II. We consider the new body

- 2 2
(3) K, = 10K+——°uk+(l——9>z,
A Ay

which is of the form A,K +u. We have

A
K, —2=22(K,—?),
A

so that K,’ is obtained from K, by an enlarging homothety keeping z

6*
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in K, fixed. Hence K,' contains K, and because of the choice of z, the
body K,' does not meet 17, so that IT separates K’ from L. Thus K,/
meets all the sets 4, K +u;, &k, but not their intersection.

Hence, if we replace 1, K +u,, by the set K,', we still have (1) and (2)
satisfied, and we can complete the proof of the theorem in the way
described above.

7. To an n»-dimensional convex body K with the origin as interior
point there corresponds the dual convex body K*. It is defined to be
the set of all points w=(u,, ..., %,) such that ux <1 for all ze K. If K
is symmetric with respect to the origin, so is K*. If K is a polyhedron,
K* is also a polyhedron, and if K is defined by a finite number of in-
equalitites w,x <1, K* is the convex hull of the finite number of points -
u;, given in these inequalities.

In this section we are going to give examples of convex bodies K
with I(K)>3. By the Main Theorem, these K have to be centrally
symmetric polyhedra. Let us make the convention always to place K
with the origin as its centre of symmetry.

TaEOREM 7.1. I(K)>3 tmplies I(K*)> 3.

Proor. Since K is a centrally symmetric polyhedron with the origin as
its centre of symmetry, the same facts hold for K*. Thus of the neces-
sary and sufficient condition for 7(K) > 3 given in B) of the Main Theorem
the two parts 1) and 2) are true for K* when they are true for K. To
prove our theorem it will be sufficient to show that also 3)is true for K*
when it is true for K. The dual of 3), however, is as follows: If L,* and
Ly;* are any two faces of K* not together contained in a supporting
plane, there are two opposite boundary points %, and u, of K* such
that u,eL,* and uy,eL,*. Let L, and L, be two disjoint faces of K*.
Take the face L," opposite to L,. Since L, and L, are disjoint, there do
not exist two opposite boundary points %, and %, such that u,eL; and
uy,eL,’. Hence, by the dual of 3), L, and L,” must together lie in a
supporting plane, so that L, and L, are contained respectively in two
opposite supporting planes. This shows that 3) holds for K* and proves
Theorem 7.1.

Let n=n,+mn, and let the n-dimensional Euclidean space ¥ be equal
to E,+E,, where the two E,, 1=1, 2, are orthogonal linear manifolds
through the origin of ¥, and dimE;=n,;. Let K, be an n,-dimensional
polyhedron in Z,.

TaeorEM 7.2. I(K, + K,)=min (I(K,), I(K))).
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Proor. Put K=K,+ K, and let f;(x) be the projection of a point
zek into B;. Then, since f,(K)=K;, we have

K +w) = K;+fi(u),
(Ky+fi(w) +(Ky+fou) = K+u.
Thus K +u is determined by its two projections. Let us prove:
a) A system of translates
(1) K+uy, ..., K+u,

with m = 2 has non-void intersection if and only if each of the two systems (2)
and (3) of projected sets

(2) Kl +fl(u1): .. "-K1+fl(um) ’
(3) Ko+ foluy), .oy Ko+ fo(ty,)
has non-vord intersection.

In fact
fi ( Q (K +“k)) < f)fi(K+uk) = fk] (Ki+fi(uk)) .

Hence if (1) has non-void intersection so has each of (2) and (3). Con-
versely, if z; is contained in all sets (2) and z, in all sets (3), x; +x, is
contained in all sets (1).

Now, if I(K)=m is finite and the sets (1) pairwise meet but have void
intersection, we get from a) that both systems of sets (2) and (3) pair-
wise meet and at least one of them has void intersection. Hence

I(K) 2 min (I(K,), [(K,)),
which is true even if I(K)=ooc.
On the other hand, if for instance I(K,) <I(K,) with m =I(K,) finite,
take w;,=f;(%;) such that the sets (2) pairwise meet but have void

intersection. Then f,(%,)=0. Hence by a) the sets (1) pairwise meet
but have void intersection. Thus

I(K) = min(I(Ky), I(K,)),

which is true even if I(K;)=1I(K,)=oc. This proves Theorem 7.2.
Let now each K; be a centrally symmetric polyhedron in E; with the
origin as its centre of symmetry.

THEOREM 7.3. If K=K, + K, then K* 1s the convex hull H(K,* UK,*)
of K,* and K,*, where K* is the dual polyhedron of K, in E;.
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Proor. Let K, be defined by some inequalities
(4) -1 uz+...+u,z, =1,

and let K, be defined by some inequalities

(5) =1 S v @yt .. 02, S 1.

K consists of all points (z;, ..., ,) satisfying all inequalities (4) and (5).
Therefore K* is the convex hull of the points

(6) i‘(ul)"':unlsoi""o)

and the points

(7 £(0, ey 0,0y s - e ey B) -

But the convex hull of the points (6) is K;* and the convex hull of the
points (7) is K,*. Hence the theorem is proved.
With the same notations as in Theorem 7.2 we get

THEOREM 7.4. If I(K,)>3 and I(K,)>3, then I(K,+K,)>3 and
I(H(K,UK,))>3, where H(K,UK,) denotes the convex hull of K, and
ch

Proor. That I(K,+ K,)>3, follows from Theorem 7.2. Because of
Theorem 7.1, I(K,*)>3 and I(K,*)>3. Hence I(K,*+ K,*)>3. Since
by Theorem 7.3

(K *+ Ko*)* = H(K** v Ko**) = H(K, U Ky) ,

we get by Theorem 7.1 that I(H(K,UK,))>3. Thus the theorem is
proved.

Theorem 7.4 gives a general method of getting polyhedra K with
I(K)>3. We start with the 1-dimensional econvex polyhedron, the inter-
val, which has I(K)= o, and get successively for n=2, 3, ... new poly-
hedra with I(K)>3 by taking as K, and K, in Theorem 7.4 the poly-
hedra already obtained.

For n=2 we get only one polyhedron, the square, which has I(K) = .
The square can be given by either max(|,|, [£,]) £ 1 or |z|+ |2, < 1.

For n=3 we get two polyhedra, the cube and the octahedron. The
cube has I(K)=o0 and can be given by max(|z,|, |%,|, |z3])<1. The
octahedron, which by Theorem 7.4 has I(K)>3 but which is no paral-
lelepiped, has I(K)=4 by the Main Theorem. It can be given by
|| + |2,] + |25] < 1.

For n=4 we get 4 polyhedra. They can be given by:
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max (|@y], |%], |25, |74]) = 1,

max (@], ||, [25]) + |2y = 1,

max (@] + |[€a| + [2g], [74]) = 1,
[@1] + 2o + 25| + |24 = 1.

Here the first one is the 4-dimensional cube, which has I(K)=occ. The
remaining three polyhedra have I(K)=4.

For n=5 we get in this way 8 polyhedra, and for n=6 we get 18
polyhedra. We can continue in this way and get polyhedra with arbi-
trary dimension. All these polyhedra can be given as above by com-
bining the two procedures of taking the sum and the maximum of the
numbers |x;|.

All polyhedra which we get in this way and those that are affinely
equivalent to them have I(X)>3. Whether there are other polyhedra
with I(K)> 3 is an open question; however for n < 5 there is no other such
polyhedron. This last result has been obtained by simple computation
(cf. Remark 3.5).
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