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THE STRUCTURE OF SEMISPACES

V. L. KLEE, JR.

1. Introduction. When L is a real linear space and p a point of L, a
semispace at p (in L) is a maximal convex subset of L~ {p}. To obtain
an intuitive idea of this notion, the reader may read the first paragraph
of § 2 and the statements of (2.1), (2.2), and (2.5). The notion was re-
cently introduced by Hammer [2], who showed that the class of all
semispaces in L is the smallest intersection-base for the class of all
convex proper subsets of L. (See also Motzkin [7]). The present paper
studies (in § 2) the structure of semispaces and (in § 3) of sets which are
the intersection of countably many semispaces. In § 4, some results of
§ 3 are extended to separable (¥) spaces, under certain topological
restrictions on the convex sets involved.

It is proved that every semispace in L can be generated in a simple
way by an ordered family of linear functionals on L, and that L is of
countable dimension if and only if every semispace can be generated by
the family of “‘codrdinate’ functionals associated with some basis for L.
The number of different isomorphism-types represented by the semi-
spaces in L is determined in terms of the dimension of L. It is proved
that if L is of countable dimension and C is a convex proper subset of L,
then C is the intersection. of a countable family of semispaces if and
only if every family of convex sets whose intersection is C contams a
countable subfamily whose intersection is C.

By a variety V in L is meant a translate of a linear subspace of L.
A hyperplane H in V is a set which is maximal among the varieties
properly contained in V; H bounds in V two open halfspaces, the maximal
convex subsets of ¥V ~H. For points z and y of L,

[, y] = {tx+(1—t)y: 0 = ¢t £ 1}, Jo,y[ = {te+(1-2)y: 0 < £ < 1},

etc. The neutral element of L will be denoted by @, the empty set by 4,
the closure of a set A by cl 4, the part of 4 not in B by 4 ~ B, the union
and intersection of a family X of sets by ¢X and =zX respectively. For
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sets in a finite-dimensional linear space, words of a topological nature
refer to the usual “Euclidean’ topology. The remaining notation and
terminology should require no explanation.

2. The structure of semispaces. If § is a semispace at p in L, it is
easy to check that § is a convex cone with vertex p, that the set
L~ (Su{p}) is also a semispace at p and is identical with the set 2p—S.
As is proved in [2], the class of all semispaces at p is the smallest inter-
section-base for the class of all convex cones with vertex p in L~ {p},
and the class of all semispaces in L is the smallest intersection-base for
the class of all convex proper subsets of L. Since each semispace at p is
of the form S + p for some semispace S at @, in studying the structure of
semispaces we may as well consider only those at @. Henceforth, ¢n this
section only, ‘‘semispace’” will mean ‘“‘semispace at @”. Verification of
the following remark is left to the reader.

(2.1) Let & be a set of linear functionals on L and r a linear order on &
such that for each xeL ~{®} there is a first f,eF (in the order r) having
fox+0, that s, f,rg whenever geF~{f.} and gx+=0. Then the set
{x: foa>0} is a semispace in L.

The semispace described in (2.1) will be denoted by S(F,r). A case
of special interest arises when B is a basis for L, ¢ a linear order on B,
F 5 the set of “codrdinate” functionals associated with B in the usual
way, and r the order on { naturally induced by ¢. The semispace
S(Fg, r) will then be denoted also by S[B, ¢], and those semispaces ob-
tainable from a basis in this way will be called basic semispaces. We shall
see below that every semispace can be represented in the form (2.1) but
that not all semispaces are basic.

The following proposition collects some useful properties of semi-
spaces, some of which are given in [2].

(2.2) A convex subset X of L~ {®} is a semispace (ai D) if and only if
Xu—X=L~{®}. If M is a linear subspace of L and T'<M, then T is
a semispace in M if and only if T=8nM for some semispace S in L. If
H is a hyperplane in L, Q is one of the open halfspaces bounded by H,-and
T is a semispace in H, then T UQ is a semispace in L; conversely, +f L is
finite-dimensional then every semispace in L has the form T UQ in this way.

Proor. The first assertion is easy to check, and leads at once to the
“if”” part of the second assertion and the first part of the third assertion.
Now consider a semispace 7' in M ; let M’ be a subspace complementary
to M in L and 7" a semispace in M’. Then the set S=(T"+M')uT" is
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a semispace in L with SnM =T, whence the proof of the second asser-
tion is complete. Finally, consider a semispace S in a finite-dimensional
L. By the basic separation theorem for convex sets, there are in L a
hyperplane H through @ and an open halfspace @ bounded by H such
that ScHuUQ. But Su—-S=L~{®}, s0o Q<8 and S=(SnH)uQ, com-
pleting the proof of (2.2).

We must now introduce a certain partial order on convex sets (dis-
cussed also in [8]). Let C be a convex set having more than one point
and xz, ye(C. We write x <y provided [z, y] <[z, 2] for some ze(C ~ {x},
y >« provided z <y, <y provided z <y and not y <z, y' > « provided
x <"y, and z~y provided <y and y <. It is easily verified that < is
transitive, whence a is an equivalence relation. When ~<[~<'] is trans-
ferred in the natural way to the set of equivalence classes, it becomes a
proper partial order which is reflexive [antireflexive]. Clearly each
equivalence class is convex.

(2.3) Suppose S is a semispace in L and X is a representative set from S
(i.e., X =8 and X includes exacily one element from each of the equivalence
classes into which S is decomposed by ~). Then X is linearly independent
and is linearly ordered by <. If L is finite-dimensional, then X is a basis
for L and 8=8[X, >].

Proor. It suffices, even for the first assertion, to consider the case in
which L is finite-dimensional. When dim L =1, the assertions are ob-
vious. Suppose they have been proved for dimZL=mn, and consider an
(n+1)-dimensional L, a semispace S in L, X as described. By (2.2),
there are an open halfspace ¢ in L and bounding hyperplane H such
that S=(SnH)uQ. Clearly ¢ is an equivalence class in S and « <"y
for each zeSnH, ye@, so XN consists of a single point z and z <’z
for each zeX ~ {z}. The desired conclusions then follow at once from
the inductive hypothesis as applied to H.

(2.4) Suppose S is a semispace in L and € is the set of all equivalence
classes in S under ~. For &, ne@, write & <"y provided x <"y whenever
weé, yen. Then if ne€ and L, is the linear extension of 7, 1 ts an open
halfspace in L, whose bounding hyperplane contains all & <.

Proor. Let A be the union of all £ <’y. We shall see below that 4
is convex, SnL, =AUy, and n=coren in L (i.e., for each yeyn and
peL, ~ {®} there exists ¢ >0 such that [y, y+ip]<y). Suppose for the
moment that this has been done, and let us see how to complete the
proof. Since 7 is convex and ANy =4, it follows by the basic separation
theorem for convex sets (using the fact that the A4 is convex and
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n=core7 in L,) that there is in L, an open halfspace @ which contains
n and misses 4. Since clearly lz, y]<# whenever zed and yey, it
follows that A is contained in the bounding hyperplane H of Q. Now the
set T'=(SnH)uQ is a semispace in L, as is the set SnL,. But
SnL”=A un<T, and since both are semispaces at @ (hence maximal
convex subsets of L,~{®}) it follows that SnL,=7, whence n=@
and the proof is complete. It remains to establish the facts assumed
above.

To show that A4 is convex it suffices to check that if yey, w,e8, u; <"y,
and peluy, u,[, then p <"y, and this follows easily by application of (2.3)
to the linear extension M of {u,, u,, ¥}, since SN is a semispace in M
and (2.3) shows that every semispace in M is basic. To see that
SnL,=Aun, observe first that 7 is a convex cone with vertex @, whence
L,=n—n. Thus if peSnL,, we have p=p, —p, with p,en, and applica-
tion of (2.3) to the linear extension of {p,, p,} shows that pedun.
Thus SnL,<Aun, and since the reverse inclusion is evident the two
sets are the same.

We wish, finally, to show that if ye» and peL, ~ {®}, then

v, y+tplen

for some ¢t>0. If peS, then (since S is a convex cone) y+2peS and
y <y +p. Then if also peL, we have y+ped uy and y+p <y, whence
[%, y+p]<n. On the other hand, if peL, ~(Su{®}) then

{_p’ —2p} < SnLn = AU’? ’

whence —2p <y and ry+ (1 —7r)(—2p)eS for some »>1. It follows that
z=y+2r-Y(r—1)pel, whence [y, 2[ <% and the proof of (2.4) is com-
plete.

We can now prove the first main result.

(2.5) THEOREM. If S is a semispace in L, there are a set § of linear
Sfunctionals on L and a linear order r on § such that S=8(F, r).

Proor. Let € and <’ be as in (2.4). It follows from (2.4) that for
each n€@, L, admits a linear functional g, such that g, =0 on o{é: £ <y}
and g,>0 on 7. Let f, be a linear functional on L with g, =f,, and let r
be the order for the f,'s induced in the natural way by the order ">
(the inverse of <’). It can be verified that S({f,: #<€}, r) is a semispace
in L which contains S, and thus must be identical with S. The proof is
complete.

The following remark is easily verified.
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(2.6) Suppose S(F, r) is a semispace in L. Then for z, yeS(F, r), x~y
if and only if f,=f, (where for pelL, f, denotes the first fe § for which
fp+0).

(2.7) TaeorEM. The linear space L is of dimension <R, if and only if
every semispace in L is basic.

Proor. For the ‘“‘only if”’ part of the theorem it suffices (in view of
(2.3)) to show that if dimZ=x, and S is a semispace in L, then S is
basic. Let L, be an increasing sequence of finite-dimensional subspaces
of L whose union is L. For each =, let S,,=8nL,; §, is a semispace in
L,. Let B, be a representative set from 8,; and having chosen B, as
a representative set from §,, observe that B, must be contained in a
representative set B, ,; from S, ;. Let < be the order in 8, and for each
n let <, be the order in §,. Then by (2.3), B, is a basis for L, and
8,=8[B,, >,]. It then follows that S=S[B, >»], where B=U7 B, and
is a basis for L. The proof is complete in one direction. (Note that the
last assertion of (2.3) does not carry over to spaces of dimension X,).

Now suppose dim L >R,; we wish to exhibit in L a nonbasic semi-
space. Observe first that there are complementary subspaces L, and L,
of L such that 8, <dim L, 2%, Since the linear space of all real se-
quences is of dimension 2%, L, must be isomorphic with a subspace
and hence L, admits a countable total set ; of linear functionals.
With % a well-ordering of $,, the set S;=8({,, #) is a semispace in L,.
Let 8, be a semispace in L, and 8=(8;+ L,)uS,. Then § is a semispace
in L and we shall show it is not basic.

Suppose there are a basis B for L and an order r on B such that
8=8[B, r]. From (2.6) it follows that B is a representative set from 8.
But since ¥, is countable, only countably many equivalence classes of
S intersect S; + L,, and hence all but countably many members of B are
in S,<L, Thus some subspace of L, admits in L a complementary
subspace of countable dimension, contradicting the fact that dim Z; > R,.
The proof of (2.7) is complete.

Two semispaces 8, and 8, in L will be called ¢somorphic provided there
is an isomorphism of L onto L taking 8, onto S,. We shall determine, in
terms of the dimension of L, the number of isomorphism-types represented
by the semispaces in L. For this we need the following result, whose
proof was supplied by Professor Tarski and does not use the continuum
hypothesis.

(2.8) If n is a cardinal 2 R,, there are 2% different order-types represented
by the linearly ordered sets of cardinality n.
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Proor. If X is a set of cardinality n, then X x X is of cardinality =
and each linear order on X may be regarded as a subset of X x X. Thus
the number of order-types under discussion is < 2" Now let 8 be the
first ordinal whose set P of predecessors has cardinality n and & the
class of all subsets of P which have cardinality n. For each Ke R, let
Ly be the linearly ordered set 2, _x (x+ R), where R is the set of rational
numbers in its usual order. It can be verified that Ly is isomorphic
with L, only if M =K. Since & is of cardinality 2* and each Ly is of
cardinality », this completes the proof.

(2.9) TEEOREM. Let k be the number of isomorphism-types represented
by the semispaces in L. Then k=1 when dimL <&, and k=2Y"L when
dimL=x, or dimL > 2%,

Proor. Note from (2.6) that two basic semispaces S[B, r] and S[C, ]
are isomorphic if and only if the linearly ordered sets (B, r) and (C, ?)
are isomorphic. Now when dimZ <R, all semispaces in L are basic
(2.7). Thus when dimZL <x,, the fact that k=1 follows from the fact
that two finite linearly ordered sets are isomorphic if they have the
same cardinality. And when dimL=g, the fact that k=2% follows
from (2.8). When dimL = 2%, L is of cardinality dimZL, so certainly
k<23mL. and it follows from (2.8) that k= 2%™%, The proof is complete,
though it would still be of interest to treat the case X,<dim L < 2%
without using the continuum hypothesis.

3. Intersections of countable families of semispaces. We start with

(3.1) LeMMA. In a finite-dimensional variety V, if a family & of convex
sets has empty intersection, then so has some countable subfamily.

Proor (by induction on the dimension » of V). For n =0, the assertion
is obvious. Suppose it is true for n =% and consider a (k + 1)-dimensional
V. By the Lindeltf property of ¥V ~n®’ (with & ={clK: Ke§), there
is a countable subfamily &, of & such that zL,"=n®’. It is easy to check
that if Q' has an interior point p, then pen®. Hence, since nQ is
empty, z®’ has no interior point and must be contained in a k-dimensional
subvariety W of V. By the inductive hypothesis, there is a countable
subfamily £, of & such that #{KnW: KeQ,}=A. Then with L=2,U8,,
we have 7@ =/, and the proof is complete.

This result should be compared with Helly’s theorem [3] that if a
Jinite family of convex sets in E* has empty intersection, then so has
some at-most-(n + 1)-membered subfamily, and with the fact that if an
arbitrary family of closed sets in E™ has empty intersection, then so has
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some countable subfamily. It may be remarked that if an infinite family
of convex sets in K" satisfies certain topological conditions and has
empty intersection, then so has some finite subfamily [3, 4].

Now for each variety ¥V, @V will denote the class of all sets C< ¥V such
that either =V or C is a semispace at some point of V, and JV will
denote the class of all intersections of countable subfamilies of SV. It
is easily verified that JV is closed under countable intersections and
includes all open halfspaces in V; hence, when V is finite-dimensional,
KV includes all closed convex subsets of V. But for V at least two-
dimensional, 3V omits all strictly convex open subsets of V.

The basic property of §V is as follows:

(3.2) TEEOREM. For a variety V of countable dimension and a convex
subset C of V, the following assertions are equivalent:
(i) CeQV;
(ii) whenever R is a family of convex sets in V for which nR<C, then
n@ < C for some countable 2< {;
(iii) whenever & s a family of convex sets in V for which nR=C, then.
nl=C for some countable L= ®.

Proor. That (ii) implies (iii) is obvious; and since each convex set is
an intersection of semispaces, it is clear that (iii) implies (i). That (i)
implies (ii) will be proved by induction on the dimension n of V, being
obvious when n=0. Suppose it has been proved for n=Fk (where k< R,}
and consider a (& + 1)-dimensional V. Let MV be the class of all convex
sets C' in V for which (ii) is true. We wish to show that IV <9IV, and
for this it clearly suffices to show that @V <IkV.

Note first that if @ is an open halfspace in V, then QeMV. For
consider a family & of convex sets in V having nR<@Q. If zR=4, we
obtain a countable < & with & <@ by applying the Lemma (3.1) to
R; if xR+ 4, such an & is obtained by applying the Lemma to obtain a.
countable L=® with a{KnH: KeQ}=4, where H is the bounding
hyperplane of Q. Now since IRV includes all open halfspaces in ¥ and
is closed under countable intersection, IV includes all closed halfspaces
in V. Consider a semispace S in V with bounding hyperplane H, and a
family & of convex sets in V with #®<S8. Since SUHeIRV, there is a
countable &, < ® with L, = SuH; and since SN He SH, by the inductive
hypothesis there is a countable ;< ® with n{KnH: KeQ}<=S8nH.
But then #(2,UL;)<S, and the proof is complete for the finite-dimen-
gional case.

It remains to consider an X,-dimensional V, and to show that 8V <M V.
To this end, let S be a semispace at the point p of V, and let {V,}7 be
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a sequence of finite-dimensional varieties through p such that UT V;=V.
Consider a family & of convex sets with #® =8. For each 7, SnV,e &V,
and hence by the finite-dimensional result there is a countable &, <&
with n&;nV,=8nV,. But then z U7 ;<8 and the proof of Theorem 1
is complete.

We have use for

(3.3) CoroLLARY. If W s a subvariety of the countable-dimensional
variety V, then JW={AnW: AeJV}.

Proor. Itisnothard toshow that WeJV. That IW<{AnW: AeJV}
follows from this and the additional observation that

SW < {SnW:S8e&V}.

The reverse inclusion follows from the fact that WeJV and the charac-
terization provided by (3.2).

For the finite-dimensional case, the structure of the members of §V
may be described recursively by means of the following

(3.4) TuEOREM. Suppose V is a finite-dimensional variety and C is a
convex subset of V. Then CeQJV if and only if there is a countable family
9 of supporting hyperplanes of C in V such that clC~C <o and Cn HeIJH
for each He .

Proor. Suppose first that CeJV; we wish to produce the family 9
as described. Let ® be a countable family of semispaces in V having
aft=C, let & be the set of all members of & whose bounding hyperplanes
actually support O, and let § be the set of such hyperplanes. For each
He$, HnCeJH by the Corollary. And clearly clC~oH<nf=0C,
whence clC~C < g9 and the proof is complete in one direction.

Suppose conversely that § exists as described; we must show that
CeQV. This is obvious if € is actually contained in some He 9, so
suppose not and for each H let @, be the open half-space bounded by H
and containing C ~ H. For each H, CnHeJH and hence CnH =Ny Ty,
where each 7'y is a semispace in H. With

%={TH'£UQH:I§‘5<OO,HE®},

& is a countable family of semispaces in ¥V for which C<zn and
aFnclC<=C. But clearly there is a countable family @& of semispaces in
V such that nG@=clC, and we then have n(FuU ®)=C, whence CeJV
and (3.4) has been proved. '

In answer to some natural questions concerning possible extensions of
Theorem (3.2) to higher-dimensional linear spaces, we record the follow-
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ing two observations: (1) In an n-dimensional linear space (where » is
an arbitrary cardinal number), there is a family of n semispaces whose
intersection is empty, even though for m <n each m-membered sub-
family has nonempty intersection. (2) If X is a linear space of dimension
n2 2% and R is an arbitrary family of subsets of E, there is an at-most-
n-membered subfamily & of ® for which #@==n®. However, this is a
trivial assertion, for £ is of cardinality n.

4. An analogous result for (F)-spaces. An (F)-space in the sense of
Banach [1] is merely a topological linear space whose topology is generated
by a complete invariant metric. The present section extends Theorem
(3.2) to separable spaces of this sort. Since such a space, if infinite-
dimensional, is of uncountable dimension, it is clear that the convex sets
involved must be subjected to some topological restrictions. We proceed
with the relevant definitions.

An inside point of a convex set C in a topological linear space is a point
p such that if K is the union of all line segments in € having p as an
inner point, then U’n(K — p) is dense in C—p. The set C is admissible
provided for each closed linear variety L, LNC includes all inside points
of its closure. It is not hard to verify that if a convex set is closed,
open, or finite-dimensional, then it is admissible. A closely related
family of sets is utilized by Michael [6].

(4.1) TeEOREM. If E s a separable space of type (F) and W is a family
of admissible convex sets in E whose intersection s the closed convex set O,
then some countable subfamily of W has intersection C.

Proor. (For a family X of sets, X" will here denote {c1X:X ex}.)
By transfinite induction or Zorn’s lemma, it is easy to produce a pair of
functions (B, F) such that 1) the domain of B and of F is the set I =[0, Q[
of all countable ordinal numbers; 2) ¥,=E, and for each « €I,

B, ={AnF,: AeA};

3) for each «el, F, , is the smallest closed linear variety containing
7B,’; 4) if o is & limit ordinal in I, F,=a{F': f<«}.

It is clear that always F, > F,.;, and we now show that if %, +#%,,
then F,+F, ,. Note that =%, is the closed convex set CnF,, and hence
by a result in [5], 298, must have an inside point p. Now suppose there
is a point gen®B,’ ~nB,, and let yelp, g[~nWB,. Then y is an inside
point of #B,’, and thus if K is the union of all line segments in #8,’
having y as an inner point, the set L=UTn(K —y) is dense in 28, =y.
It is easily verified that L is a linear subspace of F, and hence F, , is the
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closure of L+y. Thus if F,, ,=F,, it follows that y is an inside point
of each member of B,’, and (since each member of B, is an admissible
set) that yen®B, This contradiction shows that if #%," +x®B,, then
F +F,,.

Now if for each xel it is true that #%8," +#%B,, there is a function p
on I such that always p.eF,~F, . But the range of p is then an
uncountable separable metric space, necessarily having a condensation
point p,, which then is an accumulation point of F, ,. Since this is
impossible, there must be a countable ordinal yel for which #8,’==B,.

For each xel, there is by the Lindelsf property a countable 9, <A
for which #{AnF,: AcA } =B, With D=0{¥,: 05x=Zy}, Dis a
countable subfamily of Y. It can be verified that for each fel,

ao{W,: 0= a =P} ~C < 2B,/ ~C < Fyy,,
and with f=+v this gives
aD~C<caB,' ~C=aB8,~0=41,

so the proof of (4.1) is complete.

As in the previous section, easy examples show that the result just
proved probably has no significant extension to nonseparable spaces.
However, for the separable case we do mot know whether the condition
of completeness is mecessary. The following additional remarks (dealing
with certain natural-seeming extensions of the Theorem) may be of
interest:

(1) If a convex set G has an interior point and intersects each of its
supporting hyperplanes in an admissible set, then G is admissible; this
is true, in particular, if G is the union of a strictly convex open set with
an arbitrary subset of its boundary. On the other hand, Hilbert space
contains a convex precompact G5 set which is not admissible.

(2) Hilbert space contains a family & of convex sets, each having an
interior point and being simultaneously an F_,set and a G,, set, such that
® has empty intersection but every countable subfamily of ® has non-
empty intersection.
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