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INEQUALITIES FOR FUNCTIONS
OF EXPONENTIAL TYPE

R. P. BOAS, JR.

1. Introduction. Let f(z) be an entire function of exponential type 7,
with |f(z)] <M on the real axis. It is well known (for references see
[1, p. 82]) that this implies

(1.1) (f@+iy)| < M el

Duffin and Schaeffer [2] sharpened (1.1) for functions that are real on
the real axis by showing that in this case

(1.2) [f(z+1ty)| £ M coshry.

The object of this note is, first, to prove (1.2) by the method of inter-
polation series which deals so successfully with many other inequalities;
and, second, to obtain some extensions of (1.2).

It turns out that, whether or not f(z) is real on the real axis, (1.2) is
true for at least one of f(x+y), f(x—ey). (A. C. Schaeffer has pointed
out that the validity of (1.2) for one of f(x +1y), f(x —y) is also deducible
from the Duffin-Schaeffer theorem for functions that are real on the
real axis.) Consequently (1.2) is true for y >0 if |f(x+2y)| < |f(x—1y)]|
for y>0. (The latter inequality is true in particular if

limsup, , , ¥ log|f(¢y)| < limsup,_, _|y|~tlog|f(iy)|

and f(z) has no zeros in the lower half plane (B. Levin; see [1, p. 129])).
That (1.2) holds, for a given z, either for y or for —y follows from the
general inequality (containing an arbitrary real )

(1.3) [f(x+iy)e—to+f(x—iy)ei*| < 2M {cosh?ty —sin® w}1/2;

for, given z and y, we can choose w so that the left-hand side of (1.3)
i8 |f(x+1y)| + |f(x —ty)|. For any particular o (not an integral multiple
of 27) we get an inequality with a smaller bound. If f(z) is real on the
real axis, (1.3) becomes

Received May 8, 1956.
Research supported by the National Science Foundation, U. 8. A.



30 R. P. BOAS, JR.

(1.4) |Re{f(x+iy)e~*}| = M {cosh?7y—sinw}l/?,
For w=7/2 we obtain
(1.5) [ Imf(x+ty)| < M sinhly|,

which is included in a result of Hérmander’s [3, Theorem 2]. By taking
o= +7/4, we obtain

(1.6) |Ref(x+1y) |+ | Imf(x+iy)| £ M {cosh 27y }1/2.

All these inequalities can be specialized to give inequalities for poly-
nomials; this was done by Duffin and Schaeffer [2] for (1.2).

An advantage of the proof by interpolation series is that it also yields
Lp-results. Write ||f (:1:)||1!,={Si°°o |f ()|?dz }*/P. Tt is known (Plancherel and
Polya: see [1, p. 98]) that

If @+l < If @)l e, pz1;
(1.1) is the limiting case p=co. Inequality (1.3) is also true if | ... | is
replaced by || ... [, and M is replaced by |f(x)|,. In particular, for a
function that is real on the real axis, we have

IRef(x+iy)l, < IIf(@)ll, coshzy,
[Tmf (@ +iy)l, = If(®)l, sinhzly| .

However, the immediate analogue of (1.2) is false. Indeed, for p=2 we

have
(1.8) If(z+4y)lls £ (cosh2zy)l/2||f ()|, ,

where the constant is the best possible.

An inequality for |f(x+iy)ll,, p+2, can be deduced from (1.7) or
(1.8), but presumably the best possible result cannot be obtained in this
way. There are also analogous results for mean values.

(1.7)

2. The interpolation formula. We establish the following lemma.
LemMa. If f(2) is an entire function, of exponential type T, which is
bounded on the real axis, then for any real number w we have
2.1) fl+iy)eto+f@—iy)e = 2 Y (- 1), f(x—s+naf7),

where
ryIm {e-**sin (s7+ty7)}
(nm—s)? + T2y?

(2.2) Cp =

and
(2.3) st = arg {cos(w+1i7y)}.
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When f(2) is real on the real axis, the left-hand side of (2.1) is
2 Re{f(x+1iy)e~**} = 2 {Ref(x+iy)cos o+ Imf(x+iy)sin o} .

We need the explicit form (2.2) for ¢, only to verify that ¢, has the

same sign for every n.
It is enough to prove the lemma when f(z) has the special form

(2.4) 1@ = {eanio),

with «(f) of bounded variation. For, in the general case
9(z) = f(2)(02)! sindz

has this form with v replaced by 7+ (by the Paley—Wiener Theorem, for
which see [1, p. 103]). Since the expansion (2.1) for g(z) converges uni-
formly in 8, we obtain (2.1) for f(z) by letting § — 0. When f(z) has the
form (2.4), the left-hand side of (2.1) is

2 S et cos (w — ity) da(t) ,

-T

and we obtain (2.1) by expanding 2e% cos(w —ity) in a Fourier series
and integrating term by term (cf. [1, pp. 207ff.]). The choice (2.3) for s
makes e¥**cos(w —tvy) =e~***cos (w +i7y), and this makes the Fourier
series converge absolutely.

We need to evaluate X|c,|; we could use the explicit formula (2.2);
but it is simpler to apply (2.1) to the special case f(z) =cos 1z, with x=s,
when we obtain

(2.5) e, = [Re{e-i"’cos r(s+iy)}| = {cosh?7y —sin?w}/?,
if we use (2.3).

3. The inequalities. From (2.1) and (2.5) we have

(3.1) |f(x+iy)e-t+f(x—1iy)ei®| < 2 sup |f(x)| {cosh?ry—sin2w}¥/Z.

—o<r <o

Hence we have, by choosing w suitably,

(3.2) [f(@+iy)| +|f(@—iy)| < 2 sup|f(x)| cosh®zy .
Similarly, by applying Jensen’s inequality we have
(3.3) [If(x+iy)e-te+f(x—iy)e|, < 2|f(@)l|, {cosh?ry —sin*w}'2, p2=1.
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(Here we cannot deduce an analogue of (3.2), since the particular w
used in getting (3.2) depended on z.)
Now suppose that f(z) is real on the real axis; then (3.1) becomes

3.4) |Re {f(x+iy)e-i“’}| < sup|f(x)| {cosh? 7y —sin?w}1/?
and (3.3) becomes
(35)  [|Re {fz+iy)e-ie}l, S (2}, {cosh®zy —sinw} V2

By specializing w we obtain (1.5), (1.6), and (1.7).
We could deduce (1.8) from (3.5), but it is simpler to proceed directly.
If f(z) belongs to L?, we have by the Paley-Wiener Theorem
or S ety dt, gel?,
and if f(z) is also real for real z, we have ¢(—t)=¢(t). Hence
S|f(x+iy)|'~’dx = 21

—00

&5 |g(1)[2 dt

2n

]

e~ o(t) p( — 1) db + 2 g o(t) o —1) di
0

= 4 \ cosh 2yt [p(t)|% dt

ot Otsa Le—ia

A

47 cosh 2yt S lo(t)|2 dt
0

= cosh2y1:S [f(x)|? dz ,

—00

and (1.8) follows. There is strict inequality unless ¢(t)=0 almost every-
where. If ¢ <cosh2ry,we can contradict ||f(z+1iy)|ls <c||f(x)|; by taking
¢(t) =0 for £> 0 except in a small neighborhood of <.
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