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ON MAXIMAL SYMMETRIC
ORDINARY DIFFERENTIAL OPERATORS

EARL A. CODDINGTON

1. Introduction. The purpose of this note is to show how the results
of the immediately preceding paper (in the sequel referred to as (4)) can
be extended to the case of maximal symmetric ordinary differential
operators. We assume the reader is familiar with the notation and results
of (4).

The simplest example of a formally self-adjoint ordinary differential
operator L which gives rise to a maximal symmetric operator which is
not self-adjoint is Lu =idu/dr on 0z <cc. Let D be the set of all func-
tions in £%(0, oo) which are absolutely continuous on every interval of
the form 0<x<¢, 0 <c<oo, and for which Lue 20, ). For these L
and D let the operators S and 7 in £%(0, o) be defined as in the Intro-
duction of (A4). Since e*eQ%(0, o), and %€ L%(0, ), the deficiency
index of S is (0, 1). This implies S has no self-adjoint extensions, and that
the closure 8 of § is maximal symmetric. In fact, § is the operator
having a domain consisting of those ue® satisfying #(0)=0, and for
these u, Su=idu/dz.

Let L be the formally self-adjoint differential operator on the interval
(a, b) which was defined in the Introduction of (4), and let S and 7 be
the corresponding operators in § = 8%(a, b). The operator S always has
maximal symmetric extensions, and we show in section 2 below that
the domains of such extensions, and their adjoints, may be described by
certain homogeneous boundary conditions.

Every maximal symmetric extension H of S has a unique generalized
resolvent R;, in the sense of M. A. Neumark (see, for example [1], p.
278). We prove that R, is an integral operator whose kernel is a limit
of Green’s functions G, associated with appropriate self-adjoint boundary
value problems on closed bounded subintervals é of (a, b).

Associated with the generalized resolvent is a unique generalized
resolution of the identity [1, p. 277]. This is a one-parameter family
F(2), —oo<A< oo, of operators satisfying
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(a) F(A)—F(u) is positive bounded if 1> u,
(b) F(— 00)=0, F(co)=E (the identity operator),
(c) F(A+0)=F(A).

(In [1, p. 263], the condition #(4—0)=F(A) replaces the normalization
(¢), but this is of no importance). A generalized resolution of the identity
becomes an ordinary resolution of the identity if the further restriction

FQ)F(u) = F(), v =min (4 ),

is imposed. Thus the operators F(1) need not be projections. We show
how F(L)—F(u) can be expressed in terms of an essentially unique
spectral matrix ¢ and a fundamental set of solutions of Lu=Iu. The
Parseval equality and expansion theorem, corresponding to a maximal
symmetric operator H, is then a direct consequence of this representation.

With non-essential modifications the results remain valid for L operat-
ing on vector-valued functions. We intend, in a future paper, to show
how some of our results carry over to the case of elliptic partial differen-
tial operators.

2. Boundary conditions and domains of maximal symmetric ex-
tensions. Let S have the deficiency index (w*, w~). The two integers
o*, o~ satisfy 0<w*, o~ =n. If €(?) and E(—+¢) are the eigenspaces of
T for ¢ and —¢ respectively then

ot = dim €(), o~ = dim E(—17).

We assume, without any real restriction, that w+t=w~; the case w+*=w"
was treated in (4).

It was shown in [2, Theorem 2], that the closure of § is a symmetric
operator 7', whose domain 9@, is the set of all ue® satisfying (uv)=0
for all ve®. Since Sc7, T,cT, and therefore Tyu=Lu for ueD,.
From the general theory of Hilbert space [3, p. 38] it follows that

D = Dy +E()+E(—1),
and every uc® may be expressed uniquely as a sum
w=utut+u-  (ue Dy, ute i), u-eC(—i)).

The set of all maximal symmetric extensions of S (and hence of 7)) are
in a one-to-one correspondence with the set of all isometric operators
V of €(¢) into G(—¢). If H is a maximal symmetric extension of S, there
exists a unique isometry V of €(¢) into €(—7) such that the domain Dy
of H is the set of all ue® of the form
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(2.1) u=ug+{I-Vyut (ue D, ute€f)),

where I is the identity operator on €(:). For such ue®y, Hu=Lu.
" Conversely every isometry V of €(i) into G(—1) generates a maximal
symmetric extension in this way.

The domain D+ of the adjoint H* of H is given by

where €(—7¢)© VE(¢) is the orthogonal complement of VE(s) in E(—¢).
Let ¢4, ..., ¢, be an orthonormal basis for €(z). If V is any isometry

of @(7) into E(—2), the set of functions of the form (2.1) can also be
described as the set of all ue® of the form

(2.3) u = u0+§+’ajvj (up € Dy) »

where =

(2.4) v; = ¢;— Vo, G=1,..., 0,

and the a; are complex constants. For any such V let Vo,=v; for
Jj=1,..., w*. The y; are orthonormal in (—1). Let v, + 4, ..., ¥, be

an orthonormal basis for the space E(—i)©OVE(Z). Then ¢y, ..., p, is
an orthonormal basis for E(—1).

We now show that the domains Dy and Dy« can be characterized
by functions satisfying certain homogeneous boundary conditions. We
recall [2, p. 198] that the boundary conditions (ux;»=0, j=1,...,m,
for functions ue® («; are fixed in D) are linearly independent if and
only if the «; are linearly independent mod ®,. A linearly independent
set (ux;)=0, j=1,...,m, is said to be self-adjoint if (ox;)=0 for
j,lc=1, ey M.

THEOREM 1. Let H be a maximal symmetric extension of S with domain
the set of all ueD of the form (2.1). Then Dy, is the set of all ueD
satisfying the self-adjoint set of boundary conditions

(2.5) {fww) =0 (j=1,...,0%),
and Dy 8 the set of all ueDy. satisfying the (non-self-adjoint) boundary
conditions
(2.6) (up;) =0 (j=owt+1,...,07).
Proor. Let H be a maximal symmetric extension of 8 with domain

(2.1). The boundary conditions (2.5) are linearly independent. For
suppose X'y;v;€D, for some complex constants y;. Since
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2y eC@E)+E(—1),

it follows that X'y;v;=0, and this implies that Xy,;p;=2'y;Ve,=0. The
linear independence of the ¢; implies that y,=...=y,,=0.
An easy calculation, using Green’s formula, yields

(2.7) {pjpry = 2ie,  (Ywn) = — e, @) = 0

for 5,k =1, ..., o*. Therefore

(2.8) (Vv = @91 — ;P> — P¥w> + W%y = 0

for 4, k=1, ..., w+, thus proving that the set (2.5) is self-adjoint.

From (2.2) and (2.3) any ueDg» has the form

o+
=1t 3ot 3 by,
p=1 p=w++l

where a,, b, are complex constants. Thus, if j=1, ..., o*

o+
Cuv;) = Cugy) + 2:1'“ p¥5) + Z bp(’pp”J) =0,
p= p=at
for by the definition of ®,, (uyw)=0 for all ve®, (v,v;»=0 by (2.8), and

o) = Wpep =Py =0 (P =0+l ...,0735=1,...,0%).

This shows that every ueDg. satisfies the conditions (2.5). Conversely,
let ue® and satisfy (2.5). Since ue® =D,+ E(1)+E(—1),

ot o+
U= Uyt Y e, + S dpy,+ 2
p=1 p=1 p=wt+1

for some constants a,, 4,, b,. Now using the relations (2.7) in the equali-
ties (uv;) =0 it follows that d,= —a,, and hence

'”’=u0+2ap”p+ 2 by »
=1 p=wt++1

which means u€ Dg+. Thus Dy is precisely the set of all ueD satisfying
(2.5).
If ue Dy then u has the form (2.3), and for j=wt+1, ..., 0,

ot
{uyy) = Swpyp) + 21'%<va> =0.
p=
Conversely, let ue Dy, and satisfy the conditions

up;)) =0 (= owr+1,...,07).
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Then o
u=u+ 3 by, (4,€Dy),
p=wt+1
for some complex numbers b, and for j=wt+1, ..., 0",

0 = Cuppy = Cupp+ 3 byyyy;) = 0-2ib;.
p=wt+l
Thus Dy consists of just those ue Dy satisfying the conditions (2.6).
Since (y,y,>= —2i¢;;, for j, k=w++1, ..., »~, this set of boundary con-
ditions is not self-adjoint.
This completes the proof of Theorem 1.

3. The generalized resolvent of a maximal symmetric extension. Let
H be a fixed maximal symmetric extension of S whose adjoint H* has
a domain consisting of those ue® satisfying (2.5), whereas Dy is the set
of ueDg. satisfying (2.6). The generalized resolvent of H is the operator
R; defined for Im7+0 by

R, = (H*=1)'  (Iml > 0),
R, = (H=1)"'  (Iml < 0);

see [1, p. 278]. We shall show that R; is an integral operator G(I) with
a kernel which is a limit of Green’s functions for self-adjoint problems
on closed bounded subintervals § of (a, b).

Indeed, for any such é let @5, ..., @ +5 b @, . .., @, orthonormalized
to £2(d), and let .

”jd = ‘Pjo_V?’ja (J =1, ...,(D+),

where V is the isometry associated with H. Let @, 4 - .., @y, be func-
tions such that ¢, ..., ¢,, is an orthonormal basis in L%() for the
solutions of Lu=14u, and let y,, 4, ..., ¥y Pesuch that Vo, ..., Vo,
Yotr18 - - <> Yng 18 an orthonormal basis in L%) for the solutions of
Lu= —tu. Further define

Vis = Pjs—Wjs (J=ot+l, ..., n).
Then it is clear that the problem
Lu =, (uwvpy,=0 (j=1,...,2),
is self-adjoint in L2(8), and
Vs > 0; (6»(a,b);j=l,...,w+)

in the pointwise sense, as well as in £%(a, b). For Im!+0, let G;=G,(z, y, 1)
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be Green’s function for this problem. The same arguments which led to
the proof of Theorem 1 of (4) may now be applied. The set {G,} is
uniformly bounded and equicontinuous on every compact (z, y, [)-region
where Im?=0. If G is the limit of any convergent (uniform on any
compact subset of a<wz,y<b, Iml+0) sequence G,,=G, , then G()f,
where

b
G0)f@) = G v 0f @ dy (e, Imi +0)

satisfies the boundary conditions
GEWfvy =0 (G=1,...,0%
if Im!#0. This implies the following

THEOREM 2. Every convergent sequence {G,} of {Gs} tends to the same
limit @, and hence
G,~Q (8 (a, b)),
uniformly on any compact (x,y,l)-region where Iml=+0. If G(I) is the
integral operator defined above, then

) = (H*—1)-t  (Iml > 0),
Q) = (H-9)-t  (Iml < 0),

that is, G(l) = R, the generalized resolvent of H.

Proor. Let G be the limit of any convergent sequence {G,}. The
argument of the proof of the Corollary to Theorem 1 of (4) shows that
G(l)=(H*—=1)-! for Im!>0. Indeed, if fe 9, G(I)fc Dy+ for any Iml+0,
and (H*-1D)G()f=(L-1)G(1)f=f. Conversely, let ue®Dy. and put
H*-Du=(L-lu=f. Then w=u—G()f is in Dg., and (H*—-l)w=0.
For Im! > 0 the equation (H* —Ijw= 0 has only the solution w=0 which is
in Dg«. Thus u=G()f, or G(1)(H* —1)u=u, proving that G(l)= (H*—1)~!
for Imi> 0.

The symmetry Q(z,y,1)=G(y, =, 1) implies that G(!)=(G(I))*. But if
Im!<0,G(l)=(H*—1)-!,and hence G(I) =(G()))* = (H* —1))* = (H - 1)
Thus G(I) is the generalized resolvent of H, and this easily implies
@, — @ uniformly on any compact (z, y, l)-region where Imi=0.

4. The generalized resolution of the identity associated with a maximal
symmetric extension. It is now clear that Theorems 2 and 3 of (4) are
valid provided we understand by G there the limit function which is
the kernel of the generalized resolvent G(I) of H. We call g the spectral
matrix associated with H.
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It is known [1, pp. 277, 278] that corresponding to each maximal
symmetric extension H of S there exists a unique generalized resolution
of the identity F(4) which is related to the generalized resolvent G(l)

via the formula
00

©f,9) = { -0 dFDL0)  (fge$ Tml+0).

—00

This implies inversely, that if 4= (u, 4] is any finite interval whose end
points are continuity points of F(1), and F(4)=F(1)— F(u), then
!
.1 .
FS,g) = tim — (Ko+ie)f,g)dr,
&—> 40 2m1 »
where K(1)=G(l)—G(), Iml+0. Using this formula it is now obvious
that the analogue of Theorem 4 of (4) is valid.

THEOREM 3. If feC™ vanishes outside a closed bounded subinterval of
(a, b), and A, u are continuity points of F(1) and g, then

Ff@) = § 3o 0uh) denth
ar"=

This result is sufficient to imply the Parseval equality and expansion
theorem, as in Theorem 5 of (4). Thus we see that all results of (4) can
be generalized to the case of an arbitrary maximal symmetric extension
Hof 8.

REFERENCES

1. N. I. Achieser and I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum,
(German translation) Berlin (1954).

2. E. A. Coddington, The spectral representation of ordinary self-adjoint differential opera-
tors, Ann. of Math. 60 (1954), 192-211.

3. B.v. Sz. Nagy, Spektraldarstellung linearer Transformaiionen des Hilbertschen Raumes,
Ergebn. Math. 5,5 (1942).

UNIVERSITY OF COPENHAGEN, DENMARK
AND
UNIVERSITY OF CALIFORNIA, LOS ANGELES, U.8.A.



