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ON SELF-ADJOINT
ORDINARY DIFFERENTIAL OPERATORS

EARL A. CODDINGTON

1. Introduction. Let L denote the formal ordinary differential operator
L =p D" +p, D"y s

where D=d/dx, the p, are complex-valued functions having n—% con-
tinuous derivatives on an open real interval a <z <b, and py(x)+0 on
(@, b); @= —o0 or b= + oo, or both, are allowed. We further assume L
is formally self-adjoint, i.e., L coincides with its Lagrange adjoint

Lt = (=12 Drpy+ (= 1)m 1D 1p + ...+,

Let © be the Hilbert space of all complex-valued functions on (a, b)
whose magnitudes are square summable on (a, b), i.e., = L8%a, b). We
denote by D the set of all ve$ which have continuous derivatives up
to order n—1 on (a, b), w1 is absolutely continuous on every closed
subinterval of (a, b), and Lue $. Let Dg be the set of all ueD such that
u vanishes outside some closed bounded subinterval of (2, b) (the interval
may depend on u), and define the operator S in $ to have the domain

@S’ and
Su = Lu (w e Dg) .

Then 8 is a symmetric operator whose adjoint is the operator 7', with
domain D, defined by

Tu = Lu (v eD);
see [2].

Under the assumption that S has a self-adjoint extension H, we show
how to define self-adjoint boundary value problems on finite closed sub-
intervals d of (a, b) in such a way as to produce, in the limit é —» (a, b),
the unique spectral matrix associated with the expansion theorem and
Parseval equality for H. This spectral matrix is related to the Green’s
function for H —1, Iml 4+ 0, which we prove is a limit of Green’s functions
for the problems defined on the subintervals of (a, b). Finally we show
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10 EARL A. CODDINGTON

how the spectral family of projections E(1) associated with H can be
represented in terms of the spectral matrix and solutions of Luw=lu.
This representation implies the uniqueness of the spectral matrix, the
expansion theorem, and the Parseval equality.

In [1] we obtained the unique spectral matrix and Green’s function
for the cases (I) when H=1T is self-adjoint (and hence no boundary
conditions are required to specify the domain of H), and (II) when the
point a is finite and (a, b) can be replaced by [a, b), and the domain of
H results by imposing boundary conditions on 29 at a alone. Here we
show how the method of [1] can be adapted to the case of an arbitrary
self-adjoint extension H. Use will be made of the characterization which
we gave in [2], of such an H by homogeneous boundary conditions.

With minor changes our results remain valid for differential operators
defined for vector-valued functions.

2. The resolvent of a self-adjoint extension. Let H be a self-adjoint
extension of S. It satisfies S H< 7, and its domain consists of those
€D satisfying certain boundary conditions, which we now describe.

Ifa<y<z<b and u, v are in D, then Green’s formula is

{ @Lu—uZo) = o) -mwolte)
Y
where [uv](z) is the form

@) = 3 3 (- 10u®(z) (pp_n?)) .

m=1 j+k=m—1
From Green’s formula it follows that the limits

[uv](a) = lim [uv](z), [uv](b) = lim [uv](x)
T—>a z—>b
exist for all w,ve®D. Let (uw)=[uv](b) —[uv](a).

Since we assume S has a self-adjoint extension, there exist w,0<w < n,
linearly independent solutions of Lu=1u, and of Lu= —¢u, which are
in D. Let ¢y, ..., ¢, be an orthonormal basis for the solutions of Lu=1iu
in ®, and let y;, ..., y, be a corresponding orthonormal basis for the
solutions of Lu= —tu in ®. Corresponding to H there exists a unique
unitary matrix U= (u;), j, k=1, ..., w, such that the domain Dy of
H is the set of all ue® satisfying

(uv;) = 0 G=1...,0),
where
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”f=¢j—’;ujka =1 ...,0);
=1

see [2, Theorem 3]. Moreover, every o by w unitary matrix determines
a self-adjoint extension of S in this way.

We now define self-adjoint boundary value problems on closed bounded
subintervals d=[d, 6] of (a, b), and show that the resolvent (H—1)-1,
Im!+0, is an integral operator whose kernel is the limit of Green’s
functions for the problems defined on the subintervals.

The inner product and norm in £2(6) will be denoted by ( , ), and
| |l; respectively, whereas in @%(a, b) these will be denoted by ( , ) and
|| |l Further we define {uv); by

(uv)y = [uv](i))-—[uv](d) .

Using the Gram-Schmidt process let ¢4, ..., ¢, be ¢, ..., ¢, ortho-
normalized to £2(8); similarly let v, ..., v,s denote y,, ..., y, ortho-
normalized to £%9). Then, for j=1, ..., v,

J J
Pjs = kz_\.—{ 20 Prs Yo =k§ bin( D)y 5

where A4(8)=(a,;(8)), and B(8)=(b;(9)), are certain matrices having the
property that
A@®)—~E, B@E)->E (8- (ab))),

where E is the w by w unit matrix. Let ¢, s .. ., 9,, be functions such
that @y, ..., @,s is a basis for the solutions of Lu=+tu, orthonormalized
in £%(); similarly adjoin ¢, s - . ., 9,s to the set y,,, .. ., 9,5, We define
the functions v;, by

Vis = @i— 3 u; i=1,...,0),

(2.1) jé (de ]£ ﬂawkd (.7 )
”ja=¢ja_1/’ja (j=a)+l, ,’Ib)
Here U =(u,;,) is the unique unitary matrix, mentioned above, which
corresponds to the self-adjoint extension H. Clearly the matrix
U(8)=(u;(8)), (j, k=1, ..., n), where

u,k(ﬁ) = ujk (j,k = 1, “ ey (l)),

uﬁ(a)-——-l (j=w+l, -..,n),

u(0) = 0 all other 5, &,

is unitary, and (2.1) may be written as
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n
Vjs = ‘Pja_kg; ujk(a)%a G=1...,m).
From [2, Theorem 3], applied to the interval 6, it follows that the problem

(2.2) Lu = lu, (o) =0 (G =1,...,n)

(I a complex parameter) is a self-adjoint boundary value problem in
22(6).

More precisely, let ®, be the set of all we Q%) for which w1 is
absolutely continuous on 4, Luef?(d), and (uv;);=0, j=1,...,n.
Then the operator L, defined by Lsu=Lu for ue®, is a self-adjoint
operator in Q%). For Iml=0 the resolvent (L;—!)-! is an integral
operator Gy4(l), with a kernel called Green’s function G, = G,(x, y,1), which
is defined for all fe 3(8) by

G0f &) = \ 6 v, 07 @) dy -
(]

It was shown in [1, Lemma 4], that the set of functions {G,} is uniformly
bounded and equicontinuous on every compact (x,y,l)-region where
Iml+40. From this it follows that there exists a sequence of intervals
dp<l(a,b),m=1,2 ...,6, — (a, b), such that the corresponding Green’s
functions @,, =G, tend uniformly, on any compact subset of a<uz,
y<b, Iml>0 (or Iml<0), to a continuous limit function G. From
Theorem 1 in [1], any such limit G is in § as a function of y for each
fixed z, and if G(I) is defined by

b
@3)  60f@ =\CE iy (fed, Iml+0),

a

then [[G()f||= Tmi|t||f]], G()feD, and (L-)GD)f=/.

THEOREM 1. Let G be the limit of any convergent sequence {G,} of the
set {G} of Green’s functions associated with the self-adjoint boundary value
problems (2.2). If fe 9, then G(1)f, defined by (2.3), satisfies the boundary
conditions
(2.4) EDfvy=0 (G=1,...,0).

We remark that the theorem remains valid if U(6) is replaced by any

matrix of the form
U,6) 0
0 Uyd)/’
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where U,(d) is an w by o matrix tending to U as d — (a, b), and U,(9)
is an arbitrary n —w by n—® unitary matrix.
A direct consequence of Theorem 1 is the following

CoROLLARY. Every convergent sequence {G,} of {Gy} tends to the same
limit G, and hence

(2.5) Gy~ G (6 - (a, b)),

uniformly on any compact (x, y, 1)-region where Im1=+0. I 'f G(1) is defined
by (2.3), then
(2.6) Gl) = (H-)"r (Iml =+ 0).

Proor oF THE COROLLARY. Let G be the limit of any convergent
sequence {@,}, and for Im/<0 let G(I) be the corresponding integral
operator defined by (2.3). For any fe 9, G(I)feD and (2.4) is valid, thus
showing that G(I)fe Dy. Moreover (H —1)G(l)f=(L—1)G()f=f for every
f€9. Conversely, let ue®y and put (H—u=f. Then w=u—G()f is
in Dy, and (H—Il)w=0, implying w=0, for the spectrum of H is real.
Thus v=G@Q(l)f, or G(I)(H—1l)u=u for every uc®y. This proves (2.6),
and this readily implies (2.5).

Because of (2.6) we call G the Green’s function for H —1, Tml 0.

Proor or THEOREM 1. Let @ be a limit function of some convergent
sequence {G,}, and let G(I) be the integral operator given by (2.3) for
this G. The theorem will first be proved for the case when fe § vanishes
outside some closed bounded subinterval J,=[a,, b,] of (a,b). In the
following let j be a fixed integer from the set 1, ..., w, and Iml40.

Since
@O fvy = Hm GO Sfvps (0~ (a,b)),

we have to show that, given any ¢> 0, there exists a subinterval d(e)
such that

(2.7) KGOS vl < &
is valid for all § satisfying d(¢) <d<(a, b).
Since G4(l)=(L,—1)7,
(2.8) (GsDf vjeys = O (0> 6y) .

For 0=4,, let Vis = Vims Pjs= Pims ¥jo = ¥imo Gd(l)=Gm(l)’ (%, 9)5= (U, V),p,
llulls=1u|,,, and {uv),={wv),. We prove that, given any ¢> 0, there
exists a d(¢) having the property that for any 6>d(¢) there exists a

§>4,, depending on 8 and &, such that
(2.9) KGOS Vpmdm— GDf Vel < &
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is valid for all 8,,>6. However, since {G.,,(1)f vjnyn =0 by (2.8), it follows
that (2.7) is true for all d>d(¢).
Let ¢ be fixed, >46,, and 6,,24. Then by Green’s formula

(2.10) <Gy (DS vimdm— <GS ;s
= <Gm(l)f ”jm)& - <G(l)f vj>d+(LGm(l)fs ”jm)m—-&'— (Gm(l)f’ ijm)m—d ’

where m—¢ stands for 6,,—d. We estimate separately the difference
between the first two terms, and the difference between the last two
terms.

Using Green’s formula

211) LGS Vimds—<GA)S v;)s
= (LGm(l)f’ ”jm)a— (Gm(l)f7 ijm)d_ (LG(l)ﬁ vj)d+ (G(l)f! ij)d .
We shall show that for the fixed 8, as m — oo,
@) 16.Of-GOflls—~ 0,
(b) LG, f-LGD)f]ls~ 0,

@ lvm—2vlls >0,
(d) MLy, — Ljfls~> O .

(2.12)

From (2.11) it is then clear that for given £>0, >4, there exists a
424, such that

(2.13) KGO Vjmds— KGOS )l < €2 (8,29).

As to (2.12) (a) we have, since f vanishes outside d,, and dy<=d<é,,,

2
{Cnz 0. 0-66 0 )10 2y .,
&

160~ 6012 = |

é

and this tends to zero as m — oo because @,, -~ G uniformly for zed, yeé,.
Relation (2.12) (b) follows from (2.12) (a) and the fact that

(L=-0G,Of = (L-HaWf =f.
Turning to (2.12) (c) we have

(2.14) ””j "“”j”o = “‘ij—%—k); “;:k('/’km"'/’k)”a

= ll¢1m—¢jllo+k2: %] 19 sem — wrells -
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If ¢;5,=1 or 0 according as j=k or j*£k,

f (ajk(am) - 8g‘k) Pr .

||‘P5m - %‘”o =

w
§ 2 a:ﬂc m) ﬂcl ”(pk“ ’

and, since ||@y]l; < llgxll=1, this is less than or equal to

2 |@(9m) — &2 »
k=1

which tends to zero as m —oo. Similarly |y, —vills >0 as m — .
From (2.14) we now see that (2.12) (c) results. Finally, since

(2.15) Ly, = L ((ij "}é: ujk'/’km) =1 (%’m‘f'kg: ujk?’km) >
and similarly

Lv; =1 (‘Pj‘l‘g “jk'l’k) s

we see (2.12) (d) follows from (2.12) (c).
Now we estimate the difference between the last two terms in (2.10).

We let
o = I(LGm(l)f: vjm)m—d'—(Gm(l)f’ ijm)m—dl .

A 2 LG f s 10l s + | Gon(D) fllm—s L]l s
= ”LGm(l)f”m ”vjm”(a, b\-—d+ ”Gm(l)f”m “ijmH(a, b6 * -
Since LG, ()f=1G,()f+f, and [|G()flln < Tmi|~Yf ||, = ImI|-Y|f]], we

have
(2.16) A4 < (1+ [ [Im?|7) If 1l 0jmlla, by-0+ XM IF ]| 1 L2500l a, s -
Now

Then

w (]
“”;'m“(a, b8 = H‘ij—kz' ’“jk'/’km”(a, bt = H‘ij“(a, b)—o'*‘kz," l“jk| “'Pkm“(a, b5 *
=1 =1

and

§§ ajp m)|”‘7’p”(a,b}—d

”(pjm”(a, h—a = i (6m) Pp
p=1

2y

Since 4(d,,)= (aip(ém)) tends to K =(e;,) as m — oo, there exists a 6° such
that

Thus

la;,(0n)l <2 (p=1,...,0;6,>).

”(pjm”(a, b)—6 = 221 ”(ppH(a, b)y—s (6m > 60) )
p=
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and a similar estimate is valid for |[y,ll,, 5 resulting in
(2.17)  |[¥mll(a, by-s

é 2 2 "‘pp“(a, b)-—d+ 2 2 |ujk| 2 H'Pp”(a, b)—o (6m > 60) .

p=1 k=1 p=1
By virtue of (2.15) we see ||Lv;,/| 4, 3 i8 majorized by the same quantity
for 4,248 Since ¢, p, €9 it follows that, as é - (a, b),

2 ||‘Pp”(a, b o, 2 ”Wp"(a, B8 0.
p=1 =1

Therefore, from (2.17) and (2.16) we see that, given any ¢ > 0, there exists
a 0(e)>48° such that A<e/2 provided that 6>d(¢), and 6,,2d. This,
combined with (2.13) and (2.10), proves (2.9). The proof is thus complete
in case f vanishes outside a closed bounded subinterval of (a, b).

Now let f be an arbitrary element of $, and let f,, n=1,2, ..., be
functions in § vanishing outside closed bounded subintervals of (a, b)
such that ||f,—f|| >0 as n - co. Since (G(I)f,v;)=0 for j=1, ..., o,
and n=1,2, ..., we have

KGOS o) = KGOf v;) — (Gf v;)
= [(L@Of =GOS, v;) = (GO = GO fn, Luy)|
< LG (f=£l 1o}l + 1GQ) (f = f)ll 11 Loyl -

1GA) (f=fll = Tml=HIf =l »

But

and
ILGO) (f=fll = NGC) (f—F) + (f=FI = (I [Iml[72+1) [If = Fall -

Thus, letting n - oo, we see that (G(I)f v;)=0forj=1, ..., w, completing
the proof of Theorem 1.

3. The spectral matrix associated with a self-adjoint extension. Let
@s=(04z) be the spectral matrix associated with the self-adjoint problem
(2.2) on 6. It is hermitian, non-decreasing (i.e., p,(1) — o,(x) is positive
semi-definite if 1> u), the total variation of g,; is finite on every finite
A-interval, and g4 A+ 0)=g,(4), 05(0)=0. In terms of p, the Parseval
equality

lyt = {3 T i) doyal)

n
Js k=1

is valid for ue 22(8). Here
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Uy(A) = (%, 8;(1))s »

where the s,(), j=1,...,n, are n linearly independent solutions of
Lu=1lu satisfying

8% (e, l) = ¢y  (Jk=1,...,m),

for some fixed ¢, @ <¢ <b. The following theorem is a direct consequence
of Theorem 4 in [1], and Theorem 1 of the previous section.

THEOREM 2. There exists an hermitian, non-decreasing matriz ¢ = (o)
whose elements are of bounded variation on every finite A-interval, and such

that, if A= (u, 4],
at, if A=(u, 1] er(4) > e(4) (8 (a,0)),

provided the end points of A are continuity points for g;,. Further

2
1
o;x(4) = Py lim S P (o+1te)do,
e—>+0 ¥
where
gith-2 K

= _"axf—l_“ayk-l(c’ ¢,l), K@yl =Gy l)-Gkyl,

P

and G is the Green’s function for H —1.

The matrix p is called the spectral matrixz associated with H (and the
fundamental set s,, ..., s,).

4. The spectral family of projections associated with a self-adjoint
extension. Let E(1) be the spectral family of projections associated with
the self-adjoint operator H via the spectral theorem, i.e.,

H=°§1dE(A).

—oc0

‘We show how the E(4) may be expressed in terms of the spectral matrix
o and the fundamental set sy, ..., s,, thus connecting more intimately ¢

with H. If .
K@) =60-6() (Iml=+0),

we first prove

TaroreM 3. If f, geC", and vanish outside closed bounded subintervals
of (a, b), then

Math. Scand. 4. 2
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oo

(E@f,0) = 2Tml | 3 50 fe® a1~ dos@)

—o0 77 B=
where b b
fudy = (ren@nas, g0 = {s@5w0 .

a a

Proor. Let f and ¢ vanish outside §,, and in the following let &> 4,.
Suppose {x,,,} is a complete orthonormal set of eigenfunctions for the
problem (2.2) on 4, and let {4,,} be the corresponding eigenvalues. If

K1) = Gy()—G4() = 20 ImlG,(1)G,(l)
we have from the Parseval equality

(K,(f, g),, =2t Iml(Gd(l)Ga(Z)f, )
2i Im? (G, (D), Gs(Dg)s
2i Iml 37 (G,(Df, Zom)s (Gs ()G Zom)s -

(G',,(Z)f, Xom)a = (f’ Ga(l)lam)a = (Asm _Z)_l (fs Zom)s -

Therefore, using the definition of the matrix g;, we have

oo

42)  (K,()f. ) = 2 Im! S

—00

We show that by letting § — (a, b) the equality (4.2) leads to (4.1).
If K,(z,y,1)=G4(x, y,1)—Q,(x, y,1), then

&1.0) = § (VKo v, 07 0) dy) 50 da,

d &

and, since ¢/, > G uniformly for «, yeé,, we have

(E(0f 9)s > (BEWf,9) (6> (a, D).

It remains to show that the right side of (4.2) tends to the right side
of (4.1). Let

n

X 5D WA= 12 doy(2) .

Jr k=1

dro(3 £, 9) = 3 G0Fe3) doruh)
el

and "
dz(A; f, 9) =_§1§j(l)fk(l) dojx(4) .
=
If 4>0 we have
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§ dry(A3 £, 9)] _ 'gdra(l;f,f)
K A=12 = 0 |A—1|2 )

de L\ "gdrou s g, D\
= ERTEE A—1p2

= 1G5 f 115 16 Drglls

< [Iml-2 ||| llgll -

Letting 6 — (a, b), and then y - oo, we see that

dr& Z g, g)
|A—1]?

°§’ dr(2; f, 9)|

(4.3) FR.T

= [Iml=2|If1l ligll »

thus showing the convergence of the integral on the right side of (4.1).
Now let w>1+]l|. Then if |A|2u, |[A-1|2[A|=|l|>1, or |A—1-2<1.
Therefore .

dry(hi f, 9) ,
\ e < |t s g)
Y 14z e
s ut { 2 in s, 9l < w2 (22 15,03, 9)
ES ~o0

) 3 o ]
sp? (S Pdra(l;f,f)) (S A2d7y(4; g, 9)>

= =2 || | Lgl] -

We then have

°S° des(A; £, 9) t§ dr(2; f, 9)
|A—1|2 [A-1]2

l’gdw;f, 9 "S?@l;f,.q)
S - ) e

A

+u? |ILfI| [ Lgll

and letting first § — (@, b), and then u — oo, we see that the right side
of (4.2) tends to the right side of (4.1). This completes the proof of
Theorem 3.

If A= (u, ] is any finite interval let E(4)=E(A)— E(n), where E(1) is
the spectral family of projections associated with H.
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THEOREM 4. If feC™ vanishes outside a closed bounded subinterval of
(@, b), and A, u are continuity points of E(3) and o, then

(¢4) EA)f@) = Y 3@ ofie) desn(o)
a9 n=
Proor. We apply the known formula

A

1
(B(4)f, g) = lim o S(K(v+is) £, g) dv

b

to functions f, ge C™ which vanish outside closed bounded subintervals
of (a, b). From (4.1) we have

A A

1 ) 1¢/¢ P
2—n;S(K(V+’l£)f,g)d'V =;;,S‘ (S mdf(ﬁ,f,g))dv.

—00

®

If &> 2|4 +2|p|, and |o| 2 &, then

1 < (A, @) 1

eopEre S 110 *®A = et
Thus
ldz (o; f, 9) ldz(o; f, 9)|
lalsge(“"”)a'*'eg = “(A“u)msge 1+0®
T |de(o; f,
< (4, p) S Imr§0+£2y)l
< oA, ) (If llgll

where the last inequality follows from (4.3) for I=¢. Therefore

a
lim 2_: (&0 +icrs, g av

& —>+0 47T
“

1 S lim [a.rctan (}:I) — arctan (,u;a)} dz(o; f, 9)
T fof sea—» +0 € €

dr(o; f, 9),

R o>

proving that
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(B, g) = {dr(a:£,0)

4

=S(g "L'sja: 0)f(0) dos( a)) 7@ dz,
o g I k=1

where ¢ vanishes outside ;. This readily implies (4.4).
Let {=(y ---580), 1=, ..., 7m,) be vector functions of A, and

introduce the inner product
o]

€= 3 000 dend

1

and norm ||¢||=(, ¢)}. Let Q2(o) be the Hilbert space of all £, measur-
able with respect to g, such that ||| < co.

THEOREM 5. If fe @%a, b) the vector f = ( f,-), where
b
0 = {5 R de,

converges in norm in %), and

W =171 (Parseval equality) .
In terms of this f,

0

= S 21:' 8;(, l)fk(l) doj(2) (Bzxpansion theorem) ,
k= N

1
where the integral converges in norm in L%(a, b).

Proor. Let feC™ and vanish outside a closed bounded subinterval of
(a, b). The Parseval equality for f results from (4.4) and the fact that
(B, f) ~ IIfI? as 4 - (— o0, o). The expansion theorem for f results
since ||f—E(4)f||—>0 as 4 - (—o0, o). The denseness of these f in
%(a, b) allows one to extend these results to all of R2(a, b).
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