ON SELF-ADJOINT ORDINARY DIFFERENTIAL OPERATORS

EARL A. CODDINGTON

1. Introduction. Let L denote the formal ordinary differential operator

$$L = p_0 D^n + p_1 D^{n-1} + \ldots + p_n$$
,

where D=d/dx, the p_k are complex-valued functions having n-k continuous derivatives on an open real interval a < x < b, and $p_0(x) \neq 0$ on (a,b); $a=-\infty$ or $b=+\infty$, or both, are allowed. We further assume L is formally self-adjoint, i.e., L coincides with its Lagrange adjoint

$$L^+ = (-1)^n D^n \overline{p_0} + (-1)^{n-1} D^{n-1} \overline{p_1} + \ldots + \overline{p_n}$$
.

Let \mathfrak{H} be the Hilbert space of all complex-valued functions on (a, b) whose magnitudes are square summable on (a, b), i.e., $\mathfrak{H} = \mathfrak{L}^2(a, b)$. We denote by \mathfrak{D} the set of all $u \in \mathfrak{H}$ which have continuous derivatives up to order n-1 on (a, b), $u^{(n-1)}$ is absolutely continuous on every closed subinterval of (a, b), and $Lu \in \mathfrak{H}$. Let \mathfrak{D}_S be the set of all $u \in \mathfrak{D}$ such that u vanishes outside some closed bounded subinterval of (a, b) (the interval may depend on u), and define the operator S in \mathfrak{H} to have the domain \mathfrak{D}_S , and

$$Su = Lu \quad (u \in \mathfrak{D}_S)$$
.

Then S is a symmetric operator whose adjoint is the operator T, with domain \mathfrak{D} , defined by

$$Tu = Lu \quad (u \in \mathfrak{D});$$

see [2].

Under the assumption that S has a self-adjoint extension H, we show how to define self-adjoint boundary value problems on finite closed subintervals δ of (a, b) in such a way as to produce, in the limit $\delta \to (a, b)$, the unique spectral matrix associated with the expansion theorem and Parseval equality for H. This spectral matrix is related to the Green's function for H-l, $\operatorname{Im} l \neq 0$, which we prove is a limit of Green's functions for the problems defined on the subintervals of (a, b). Finally we show

Received February 6, 1956.

how the spectral family of projections $E(\lambda)$ associated with H can be represented in terms of the spectral matrix and solutions of $Lu = \lambda u$. This representation implies the uniqueness of the spectral matrix, the expansion theorem, and the Parseval equality.

In [1] we obtained the unique spectral matrix and Green's function for the cases (I) when H = T is self-adjoint (and hence no boundary conditions are required to specify the domain of H), and (II) when the point a is finite and (a, b) can be replaced by [a, b), and the domain of H results by imposing boundary conditions on $u \in \mathfrak{D}$ at a alone. Here we show how the method of [1] can be adapted to the case of an arbitrary self-adjoint extension H. Use will be made of the characterization which we gave in [2], of such an H by homogeneous boundary conditions.

With minor changes our results remain valid for differential operators defined for vector-valued functions.

2. The resolvent of a self-adjoint extension. Let H be a self-adjoint extension of S. It satisfies $S \subseteq H \subseteq T$, and its domain consists of those $u \in \mathfrak{D}$ satisfying certain boundary conditions, which we now describe.

If a < y < x < b and u, v are in \mathfrak{D} , then Green's formula is

$$\int_{y}^{x} (\overline{v} Lu - u \overline{Lv}) = [uv](x) - [uv](y) ,$$

where [uv](x) is the form

$$[uv](x) = \sum_{m=1}^{n} \sum_{j+k=m-1} (-1)^{j} u^{(k)}(x) (p_{n-m}\overline{v})^{(j)}(x) .$$

From Green's formula it follows that the limits

$$[uv](a) = \lim_{x \to a} [uv](x), \quad [uv](b) = \lim_{x \to b} [uv](x)$$

exist for all $u, v \in \mathfrak{D}$. Let $\langle uv \rangle = [uv](b) - [uv](a)$.

Since we assume S has a self-adjoint extension, there exist ω , $0 \le \omega \le n$, linearly independent solutions of Lu=iu, and of Lu=-iu, which are in \mathfrak{D} . Let $\varphi_1, \ldots, \varphi_{\omega}$ be an orthonormal basis for the solutions of Lu=iu in \mathfrak{D} , and let $\psi_1, \ldots, \psi_{\omega}$ be a corresponding orthonormal basis for the solutions of Lu=-iu in \mathfrak{D} . Corresponding to H there exists a unique unitary matrix $U=(u_{jk}), j, k=1, \ldots, \omega$, such that the domain \mathfrak{D}_H of H is the set of all $u \in \mathfrak{D}$ satisfying

$$\langle uv_j \rangle = 0 \quad (j = 1, \ldots, \omega),$$

where

$$v_j = \varphi_j - \sum_{k=1}^{\omega} u_{jk} \psi_k \qquad (j = 1, \ldots, \omega);$$

see [2, Theorem 3]. Moreover, every ω by ω unitary matrix determines a self-adjoint extension of S in this way.

We now define self-adjoint boundary value problems on closed bounded subintervals $\delta = [\tilde{a}, \tilde{b}]$ of (a, b), and show that the resolvent $(H-l)^{-1}$, Im $l \neq 0$, is an integral operator whose kernel is the limit of Green's functions for the problems defined on the subintervals.

The inner product and norm in $\mathfrak{L}^2(\delta)$ will be denoted by (,)_{δ} and $\| \|_{\delta}$ respectively, whereas in $\mathfrak{L}^2(a,b)$ these will be denoted by (,) and $\| \|_{\delta}$. Further we define $\langle uv \rangle_{\delta}$ by

$$\langle uv \rangle_{\delta} = [uv](\tilde{b}) - [uv](\tilde{a}).$$

Using the Gram-Schmidt process let $\varphi_{1\delta}, \ldots, \varphi_{\omega\delta}$ be $\varphi_1, \ldots, \varphi_{\omega}$ orthonormalized to $\mathfrak{L}^2(\delta)$; similarly let $\psi_{1\delta}, \ldots, \psi_{\omega\delta}$ denote $\psi_1, \ldots, \psi_{\omega}$ orthonormalized to $\mathfrak{L}^2(\delta)$. Then, for $j = 1, \ldots, \omega$,

$$\varphi_{j\delta} = \sum_{k=1}^{j} a_{jk}(\delta) \varphi_k, \quad \psi_{j\delta} = \sum_{k=1}^{j} b_{jk}(\delta) \psi_k ,$$

where $A(\delta) = (a_{jk}(\delta))$, and $B(\delta) = (b_{jk}(\delta))$, are certain matrices having the property that $A(\delta) \to E$, $B(\delta) \to E$ $(\delta \to (a, b))$,

where E is the ω by ω unit matrix. Let $\varphi_{\omega+1\delta}, \ldots, \varphi_{n\delta}$ be functions such that $\varphi_{1\delta}, \ldots, \varphi_{n\delta}$ is a basis for the solutions of Lu = iu, orthonormalized in $\mathfrak{L}^2(\delta)$; similarly adjoin $\psi_{\omega+1\delta}, \ldots, \psi_{n\delta}$ to the set $\psi_{1\delta}, \ldots, \psi_{\omega\delta}$. We define the functions $v_{i\delta}$ by

(2.1)
$$v_{j\delta} = \varphi_{j\delta} - \sum_{k=1}^{\omega} u_{jk} \psi_{k\delta} \qquad (j = 1, \ldots, \omega),$$
$$v_{j\delta} = \varphi_{j\delta} - \psi_{j\delta} \qquad (j = \omega + 1, \ldots, n).$$

Here $U = (u_{jk})$ is the unique unitary matrix, mentioned above, which corresponds to the self-adjoint extension H. Clearly the matrix $U(\delta) = (u_{jk}(\delta)), (j, k = 1, ..., n)$, where

$$egin{align} u_{jk}(\delta) &= u_{jk} & (j,\, k = 1,\, \ldots,\, \omega) \;, \ &u_{jj}(\delta) &= 1 & (j = \omega + 1,\, \ldots,\, n) \;, \ &u_{jk}(\delta) &= 0 & ext{all other } j,\, k \;, \ &\end{array}$$

is unitary, and (2.1) may be written as

$$v_{j\delta} = \varphi_{j\delta} - \sum_{k=1}^{n} u_{jk}(\delta) \psi_{k\delta} \qquad (j = 1, \ldots, n).$$

From [2, Theorem 3], applied to the interval δ , it follows that the problem

(2.2)
$$Lu = lu, \quad \langle uv_{j\delta} \rangle_{\delta} = 0 \quad (j = 1, ..., n)$$

(*l* a complex parameter) is a self-adjoint boundary value problem in $\mathfrak{L}^2(\delta)$.

More precisely, let \mathfrak{D}_{δ} be the set of all $u \in \mathfrak{L}^{2}(\delta)$ for which $u^{(n-1)}$ is absolutely continuous on δ , $Lu \in \mathfrak{L}^{2}(\delta)$, and $\langle uv_{j\delta} \rangle_{\delta} = 0$, $j = 1, \ldots, n$. Then the operator L_{δ} defined by $L_{\delta}u = Lu$ for $u \in \mathfrak{D}_{\delta}$ is a self-adjoint operator in $\mathfrak{L}^{2}(\delta)$. For $\mathrm{Im} l \neq 0$ the resolvent $(L_{\delta} - l)^{-1}$ is an integral operator $G_{\delta}(l)$, with a kernel called Green's function $G_{\delta} = G_{\delta}(x, y, l)$, which is defined for all $f \in \mathfrak{L}^{2}(\delta)$ by

$$G_{\delta}(l)f(x) = \int_{\Lambda} G_{\delta}(x, y, l)f(y) dy$$
.

It was shown in [1, Lemma 4], that the set of functions $\{G_{\delta}\}$ is uniformly bounded and equicontinuous on every compact (x, y, l)-region where $\operatorname{Im} l \neq 0$. From this it follows that there exists a sequence of intervals $\delta_m \subset (a, b), \ m = 1, 2, \ldots, \delta_m \to (a, b)$, such that the corresponding Green's functions $G_m = G_{\delta_m}$ tend uniformly, on any compact subset of a < x, y < b, $\operatorname{Im} l > 0$ (or $\operatorname{Im} l < 0$), to a continuous limit function G. From Theorem 1 in [1], any such limit G is in $\mathfrak F$ as a function of g for each fixed g, and if g(g) is defined by

(2.3)
$$G(l)f(x) = \int_{a}^{b} G(x, y, l)f(y) dy \qquad (f \in \mathfrak{F}, \text{ Im } l \neq 0),$$

then $||G(l)f|| \le |\operatorname{Im} l|^{-1}||f||$, $G(l)f \in \mathfrak{D}$, and (L-l)G(l)f = f.

THEOREM 1. Let G be the limit of any convergent sequence $\{G_m\}$ of the set $\{G_s\}$ of Green's functions associated with the self-adjoint boundary value problems (2.2). If $f \in \mathfrak{F}$, then G(l)f, defined by (2.3), satisfies the boundary conditions

(2.4)
$$\langle G(l)f v_j \rangle = 0 \qquad (j = 1, \ldots, \omega).$$

We remark that the theorem remains valid if $U(\delta)$ is replaced by any matrix of the form

$$\begin{pmatrix} U_{\mathbf{1}}(\delta) & 0 \\ 0 & U_{\mathbf{2}}(\delta) \end{pmatrix},$$

where $U_1(\delta)$ is an ω by ω matrix tending to U as $\delta \to (a, b)$, and $U_2(\delta)$ is an arbitrary $n - \omega$ by $n - \omega$ unitary matrix.

A direct consequence of Theorem 1 is the following

Corollary. Every convergent sequence $\{G_m\}$ of $\{G_\delta\}$ tends to the same limit G, and hence

$$(2.5) G_{\delta} \to G (\delta \to (a, b)),$$

uniformly on any compact (x, y, l)-region where $\operatorname{Im} l \neq 0$. If G(l) is defined by (2.3), then

(2.6)
$$G(l) = (H-l)^{-1} \quad (\operatorname{Im} l \neq 0).$$

PROOF OF THE COROLLARY. Let G be the limit of any convergent sequence $\{G_m\}$, and for $\mathrm{Im}\,l \neq 0$ let G(l) be the corresponding integral operator defined by (2.3). For any $f \in \mathfrak{F}$, $G(l)f \in \mathfrak{D}$ and (2.4) is valid, thus showing that $G(l)f \in \mathfrak{D}_H$. Moreover (H-l)G(l)f = (L-l)G(l)f = f for every $f \in \mathfrak{F}$. Conversely, let $u \in \mathfrak{D}_H$ and put (H-l)u = f. Then w = u - G(l)f is in \mathfrak{D}_H , and (H-l)w = 0, implying w = 0, for the spectrum of H is real. Thus u = G(l)f, or G(l)(H-l)u = u for every $u \in \mathfrak{D}_H$. This proves (2.6), and this readily implies (2.5).

Because of (2.6) we call G the Green's function for H-l, $\text{Im } l \neq 0$.

PROOF OF THEOREM 1. Let G be a limit function of some convergent sequence $\{G_m\}$, and let G(l) be the integral operator given by (2.3) for this G. The theorem will first be proved for the case when $f \in \mathfrak{H}$ vanishes outside some closed bounded subinterval $\delta_0 = [a_0, b_0]$ of (a, b). In the following let j be a fixed integer from the set $1, \ldots, \omega$, and $\operatorname{Im} l \neq 0$. Since

$$\langle G(l)f v_i \rangle = \lim \langle G(l)f v_i \rangle_{\delta} \quad (\delta \to (a, b)),$$

we have to show that, given any $\varepsilon > 0$, there exists a subinterval $\delta(\varepsilon)$ such that

$$(2.7) |\langle G(l)f v_i \rangle_{\delta}| < \varepsilon$$

is valid for all δ satisfying $\delta(\varepsilon) \subset \delta \subset (a, b)$.

Since $G_{\delta}(l) = (L_{\delta} - l)^{-1}$,

(2.8)
$$\langle G_{\delta}(l)f \, v_{i\delta} \rangle_{\delta} = 0 \qquad (\delta \supset \delta_{0}) .$$

For $\delta = \delta_m$ let $v_{j\delta} = v_{jm}$, $\varphi_{j\delta} = \varphi_{jm}$, $\psi_{j\delta} = \psi_{jm}$, $G_{\delta}(l) = G_m(l)$, $(u, v)_{\delta} = (u, v)_m$, $||u||_{\delta} = ||u||_m$, and $\langle uv \rangle_{\delta} = \langle uv \rangle_m$. We prove that, given any $\varepsilon > 0$, there exists a $\delta(\varepsilon)$ having the property that for any $\delta \supset \delta(\varepsilon)$ there exists a $\delta \supset \delta_0$, depending on δ and ε , such that

$$|\langle G_m(l)f \, v_{jm} \rangle_m - \langle G(l)f \, v_j \rangle_{\delta}| < \varepsilon$$

is valid for all $\delta_m \supset \tilde{\delta}$. However, since $\langle G_m(l)f v_{jm} \rangle_m = 0$ by (2.8), it follows that (2.7) is true for all $\delta \supset \delta(\varepsilon)$.

Let δ be fixed, $\delta \supset \delta_0$, and $\delta_m \supset \delta$. Then by Green's formula

$$\begin{split} (2.10) & \left\langle G_m(l) f \, v_{jm} \right\rangle_m - \left\langle G(l) f \, v_j \right\rangle_{\delta} \\ & = \left\langle G_m(l) f \, v_{jm} \right\rangle_{\delta} - \left\langle G(l) f \, v_j \right\rangle_{\delta} + \left(L G_m(l) f, \, v_{jm} \right)_{m-\delta} - \left(G_m(l) f, \, L v_{jm} \right)_{m-\delta} \,, \end{split}$$

where $m-\delta$ stands for $\delta_m-\delta$. We estimate separately the difference between the first two terms, and the difference between the last two terms.

Using Green's formula

$$(2.11) \qquad \langle G_m(l)f \, v_{jm} \rangle_{\delta} - \langle G(l)f \, v_j \rangle_{\delta}$$

$$= \left(LG_m(l)f, \, v_{im} \right)_{\delta} - \left(G_m(l)f, \, Lv_{im} \right)_{\delta} - \left(LG(l)f, \, v_i \right)_{\delta} + \left(G(l)f, \, Lv_i \right)_{\delta}.$$

We shall show that for the fixed δ , as $m \to \infty$,

$$\begin{array}{ll} ({\bf a}) & \|G_m(l)f - G(l)f\|_{\delta} \to 0 \; , \\ \\ ({\bf b}) & \|LG_m(l)f - LG(l)f\|_{\delta} \to 0 \; , \\ \\ ({\bf c}) & \|v_{jm} - v_j\|_{\delta} \to 0 \; , \end{array}$$

From (2.11) it is then clear that for given $\varepsilon > 0$, $\delta \supset \delta_0$, there exists a $\tilde{\delta} \supset \delta$, such that

(d) $||Lv_{im} - Lv_i||_{\delta} \rightarrow 0$.

$$(2.13) |\langle G_m(l)f v_{im}\rangle_{\delta} - \langle G(l)f v_i\rangle_{\delta}| < \varepsilon/2 (\delta_m \supset \tilde{\delta}).$$

As to (2.12) (a) we have, since f vanishes outside δ_0 , and $\delta_0 \subset \delta \subset \delta_m$,

$$||G_m(l)f - G(l)f||_{\delta^2} \, = \, \int\limits_{\delta} \, \bigg| \int\limits_{\delta_0} \big(G_m(x,\,y,\,l) - G(x,\,y,\,l) \big) f(y) \,\, dy \, \bigg|^2 \, dx \,\, ,$$

and this tends to zero as $m \to \infty$ because $G_m \to G$ uniformly for $x \in \delta$, $y \in \delta_0$. Relation (2.12) (b) follows from (2.12) (a) and the fact that

$$(L-l)G_m(l)f = (L-l)G(l)f = f.$$

Turning to (2.12) (c) we have

$$||v_{jm} - v_{j}||_{\delta} = ||\varphi_{jm} - \varphi_{j} - \sum_{k=1}^{\infty} u_{jk} (\psi_{km} - \psi_{k})||_{\delta}$$

$$\leq ||\varphi_{jm} - \varphi_{j}||_{\delta} + \sum_{k=1}^{\infty} |u_{jk}| ||\psi_{km} - \psi_{k}||_{\delta}.$$

If $\varepsilon_{ik} = 1$ or 0 according as j = k or $j \neq k$,

$$\begin{split} \|\varphi_{jm} - \varphi_{j}\|_{\delta} &= \left\| \sum_{k=1}^{\omega} \left(a_{jk}(\delta_{m}) - \varepsilon_{jk} \right) \varphi_{k} \right\|_{\delta} \\ &\leq \sum_{k=1}^{\omega} \left| a_{jk}(\delta_{m}) - \varepsilon_{jk} \right| \|\varphi_{k}\|, \end{split}$$

and, since $\|\varphi_k\|_{\delta} \le \|\varphi_k\| = 1$, this is less than or equal to

$$\sum_{k=1}^{\omega} |a_{jk}(\delta_m) - \varepsilon_{jk}|,$$

which tends to zero as $m \to \infty$. Similarly $\|\psi_{km} - \psi_k\|_{\delta} \to 0$ as $m \to \infty$. From (2.14) we now see that (2.12) (c) results. Finally, since

$$(2.15) Lv_{jm} = L\left(\varphi_{jm} - \sum_{k=1}^{\omega} u_{jk} \psi_{km}\right) = i\left(\varphi_{jm} + \sum_{k=1}^{\omega} u_{jk} \psi_{km}\right),$$

and similarly

$$Lv_j = i \left(\varphi_j + \sum_{k=1}^{\omega} u_{jk} \psi_k \right),$$

we see (2.12) (d) follows from (2.12) (c).

Now we estimate the difference between the last two terms in (2.10). We let

$$\Lambda = \left| \left(LG_m(l)f, v_{jm} \right)_{m-\delta} - \left(G_m(l)f, Lv_{jm} \right)_{m-\delta} \right|.$$

Then

$$A \leq \|LG_{m}(l)f\|_{m-\delta} \|v_{jm}\|_{m-\delta} + \|G_{m}(l)f\|_{m-\delta} \|Lv_{jm}\|_{m-\delta}$$

$$\leq \|LG_{m}(l)f\|_{m} \|v_{jm}\|_{(a,b)-\delta} + \|G_{m}(l)f\|_{m} \|Lv_{jm}\|_{(a,b)-\delta} .$$

Since $LG_m(l)f = lG_m(l)f + f$, and $||G_m(l)f||_m \le |\operatorname{Im} l|^{-1}||f||_m = |\operatorname{Im} l|^{-1}||f||$, we have

$$(2.16) \ \ \varLambda \leq (1+|l||\mathrm{Im}\,l|^{-1}) \|f\| \|v_{jm}\|_{(a,\ b)\to\delta} + |\mathrm{Im}\,l|^{-1} \|f\| \|Lv_{jm}\|_{(a,\ b)\to\delta}.$$

Now

$$||v_{jm}||_{(a, b)-\delta} = ||\varphi_{jm} - \sum_{k=1}^{\omega} u_{jk} \psi_{km}||_{(a, b)-\delta} \le ||\varphi_{jm}||_{(a, b)-\delta} + \sum_{k=1}^{\omega} |u_{jk}| ||\psi_{km}||_{(a, b)-\delta},$$
 and

$$\|\varphi_{jm}\|_{(a,\ b)-\delta} = \left\| \sum_{p=1}^{\omega} a_{jp}(\delta_m) \varphi_p \right\|_{(a,\ b)-\delta} \leq \sum_{p=1}^{\omega} |a_{jp}(\delta_m)| \|\varphi_p\|_{(a,\ b)-\delta}.$$

Since $A(\delta_m) = (a_{jp}(\delta_m))$ tends to $E = (\varepsilon_{jp})$ as $m \to \infty$, there exists a δ^0 such that

$$|a_{jp}(\delta_m)| \, < \, 2 \qquad (j, \, p \, = \, 1, \, \ldots, \, \omega \, ; \, \delta_m \, \supseteq \, \delta^0) \; .$$

Thus

$$\|\varphi_{jm}\|_{(a, b)-\delta} \leq 2 \sum_{p=1}^{\omega} \|\varphi_p\|_{(a, b)-\delta} \qquad (\delta_m \supset \delta^0) ,$$

and a similar estimate is valid for $\|\varphi_{km}\|_{(a,b)\to\delta}$, resulting in

 $(2.17) ||v_{jm}||_{(a,b)-\delta}$

$$\leq \ 2 \sum_{p=1}^{\omega} \|\varphi_p\|_{(a,\;b)-\delta} + 2 \sum_{k=1}^{\omega} |u_{jk}| \sum_{p=1}^{\omega} \|\psi_p\|_{(a,\;b)-\delta} \qquad (\delta_m \supset \delta^{\mathbf{0}}) \;.$$

By virtue of (2.15) we see $||Lv_{jm}||_{(a,b)-\delta}$ is majorized by the same quantity for $\delta_m \supset \delta^0$. Since $\varphi_p, \psi_p \in \mathfrak{F}$ it follows that, as $\delta \to (a,b)$,

$$\sum_{p=1}^{\omega}\|\varphi_p\|_{(a,\ b)-\delta}\to 0, \qquad \sum_{p=1}^{\omega}\|\psi_p\|_{(a,\ b)-\delta}\to 0\ .$$

Therefore, from (2.17) and (2.16) we see that, given any $\varepsilon > 0$, there exists a $\delta(\varepsilon) \supset \delta^0$ such that $\Lambda < \varepsilon/2$ provided that $\delta \supset \delta(\varepsilon)$, and $\delta_m \supset \delta$. This, combined with (2.13) and (2.10), proves (2.9). The proof is thus complete in case f vanishes outside a closed bounded subinterval of (a, b).

Now let f be an arbitrary element of \mathfrak{H} , and let f_n , $n=1, 2, \ldots$, be functions in \mathfrak{H} vanishing outside closed bounded subintervals of (a, b) such that $||f_n-f|| \to 0$ as $n \to \infty$. Since $\langle G(l)f_n v_j \rangle = 0$ for $j=1, \ldots, \omega$, and $n=1, 2, \ldots$, we have

$$\begin{split} |\langle G(l)f \, v_j \rangle| &= |\langle G(l)f \, v_j \rangle - \langle G(l)f_n \, v_j \rangle| \\ &= \left| \left(L(G(l)f - G(l)f_n), \, v_j \right) - \left(G(l)f - G(l)f_n, \, Lv_j \right) \right| \\ &\leq ||LG(l) \, (f - f_n)|| \, ||v_j|| + ||G(l) \, (f - f_n)|| \, ||Lv_j|| \; . \end{split}$$

But

$$||G(l)(f-f_n)|| \le ||\operatorname{Im} l|^{-1}||f-f_n||,$$

and

$$\|LG(l)(f-f_n)\| \,=\, \|lG(l)(f-f_n)+(f-f_n)\| \,\leqq\, (|l|\,|\operatorname{Im} l|^{-1}+1)\,\,||f-f_n||\,\,.$$

Thus, letting $n \to \infty$, we see that $\langle G(l)f v_j \rangle = 0$ for $j = 1, \ldots, \omega$, completing the proof of Theorem 1.

3. The spectral matrix associated with a self-adjoint extension. Let $\varrho_{\delta} = (\varrho_{\delta jk})$ be the spectral matrix associated with the self-adjoint problem (2.2) on δ . It is hermitian, non-decreasing (i.e., $\varrho_{\delta}(\lambda) - \varrho_{\delta}(\mu)$ is positive semi-definite if $\lambda > \mu$), the total variation of $\varrho_{\delta jk}$ is finite on every finite λ -interval, and $\varrho_{\delta}(\lambda + 0) = \varrho_{\delta}(\lambda)$, $\varrho_{\delta}(0) = 0$. In terms of ϱ_{δ} the Parseval equality

$$||u||_{\delta^{2}} = \int_{-\infty}^{\infty} \int_{j, k=1}^{n} \overline{\hat{u}_{\delta j}(\lambda)} \ \hat{u}_{\delta k}(\lambda) \ d\varrho_{\delta jk}(\lambda)$$

is valid for $u \in \Omega^2(\delta)$. Here

$$\hat{u}_{\delta j}(\lambda) = (u, s_j(\lambda))_{\delta},$$

where the $s_j(l)$, $j=1, \ldots, n$, are n linearly independent solutions of Lu=lu satisfying

$$s_j^{(k-1)}(c, l) = \varepsilon_{jk}$$
 $(j, k = 1, ..., n)$,

for some fixed c, $\tilde{a} < c < \tilde{b}$. The following theorem is a direct consequence of Theorem 4 in [1], and Theorem 1 of the previous section.

THEOREM 2. There exists an hermitian, non-decreasing matrix $\varrho = (\varrho_{jk})$ whose elements are of bounded variation on every finite λ -interval, and such that, if $\Delta = (\mu, \lambda]$, $\rho_{kik}(\Delta) \rightarrow \rho_{jk}(\Delta)$ $(\delta \rightarrow (a, b))$,

provided the end points of Δ are continuity points for ϱ_{ik} . Further

$$\varrho_{jk}(\Delta) = rac{1}{2\pi i} \lim_{\epsilon \to +0} \int_{\mu}^{\lambda} P_{jk}(\sigma + i\epsilon) d\sigma$$
,

where

$$P_{jk}(l) = \frac{\partial^{j+k-2} K}{\partial x^{j-1} \, \partial y^{k-1}}(c, \, c, \, l), \qquad K(x, \, y, \, l) \, = \, G(x, \, y, \, l) - G(x, \, y, \, \bar{l}) \; ,$$

and G is the Green's function for H-l.

The matrix ϱ is called the *spectral matrix* associated with H (and the fundamental set s_1, \ldots, s_n).

4. The spectral family of projections associated with a self-adjoint extension. Let $E(\lambda)$ be the spectral family of projections associated with the self-adjoint operator H via the spectral theorem, i.e.,

$$H = \int_{-\infty}^{\infty} \lambda \, dE(\lambda) .$$

We show how the $E(\lambda)$ may be expressed in terms of the spectral matrix ϱ and the fundamental set s_1, \ldots, s_n , thus connecting more intimately ϱ with H. If $K(l) = G(l) - G(\bar{l}) \qquad (\text{Im } l \neq 0) ,$

we first prove

THEOREM 3. If $f, g \in \mathbb{C}^n$, and vanish outside closed bounded subintervals of (a, b), then

Math. Scand. 4.

$$\left(K(l)f,g\right)=\,2i\,\,\mathrm{Im}\,l\!\int\limits_{-\infty}^{\infty}\sum_{j,\,\,k=1}^{n}\overline{\widehat{g_{j}}(\lambda)}\,\widehat{f}_{k}(\lambda)\,|\lambda-l|^{-2}\,d\varrho_{jk}(\lambda)\;,$$

where

$$\hat{f}_k(\lambda) = \int_a^b f(x) \, \overline{s_k(x, \lambda)} \, dx, \qquad \hat{g}_j(\lambda) = \int_a^b g(x) \, \overline{s_j(x, \lambda)} \, dx.$$

PROOF. Let f and g vanish outside δ_0 , and in the following let $\delta \supset \delta_0$. Suppose $\{\chi_{\delta m}\}$ is a complete orthonormal set of eigenfunctions for the problem (2.2) on δ , and let $\{\lambda_{\delta m}\}$ be the corresponding eigenvalues. If

$$K_{\delta}(l) = G_{\delta}(l) - G_{\delta}(\bar{l}) = 2i \operatorname{Im} l G_{\delta}(l) G_{\delta}(\bar{l}) ,$$

we have from the Parseval equality

$$\begin{split} \big(K_{\delta}(l)f,\,g\big)_{\delta} &= \, 2i \, \operatorname{Im} l \big(G_{\delta}(l)\,G_{\delta}(\bar{l})f,\,g\big)_{\delta} \\ &= \, 2i \, \operatorname{Im} l \big(G_{\delta}(\bar{l})f,\,G_{\delta}(\bar{l})g\big)_{\delta} \\ &= \, 2i \, \operatorname{Im} l \, \sum_{m} \big(G_{\delta}(\bar{l})f,\,\chi_{\delta m}\big)_{\delta} \, \overline{\big(G_{\delta}(\bar{l})g,\,\chi_{\delta m}\big)_{\delta}} \, . \end{split}$$

But

$$\big(G_{\delta}(\bar{l})f,\,\chi_{\delta m}\big)_{\delta} \,=\, \big(f,\,G_{\delta}(l)\,\chi_{\delta m}\big)_{\delta} \,=\, (\lambda_{\delta m}-\bar{l})^{-1}\,\,(f,\,\chi_{\delta m})_{\delta}\;.$$

Therefore, using the definition of the matrix ϱ_{δ} , we have

$$(4.2) \qquad \big(K_{\delta}(l)f,g\big)_{\delta} = 2i \operatorname{Im} l \int_{-\infty}^{\infty} \sum_{j,k=1}^{n} \overline{\widehat{g}_{j}(\lambda)} \, \widehat{f}_{k}(\lambda) |\lambda - l|^{-2} \, d\varrho_{\delta jk}(\lambda) \, .$$

We show that by letting $\delta \to (a, b)$ the equality (4.2) leads to (4.1). If $K_{\delta}(x, y, l) = G_{\delta}(x, y, l) - G_{\delta}(x, y, \bar{l})$, then

$$(K_{\delta}(l)f, g)_{\delta} = \int_{\delta_0} \left(\int_{\delta_0} K_{\delta}(x, y, l) f(y) \, dy \right) \overline{g(x)} \, dx ,$$

and, since $G_{\delta} \to G$ uniformly for $x, y \in \delta_0$, we have

$$(K_{\delta}(l)f, g)_{\delta} \rightarrow (K(l)f, g) \quad (\delta \rightarrow (a, b)).$$

It remains to show that the right side of (4.2) tends to the right side of (4.1). Let

$$d\tau_{\delta}(\lambda; f, g) = \sum_{j,k=1}^{n} \widehat{g}_{j}(\lambda) \widehat{f}_{k}(\lambda) d\varrho_{\delta jk}(\lambda) ,$$

and

$$d\tau(\lambda; f, g) = \sum_{i, k=1}^{n} \overline{\hat{g}_{i}(\lambda)} \, \hat{f}_{k}(\lambda) \, d\varrho_{ik}(\lambda) .$$

If $\mu > 0$ we have

$$\begin{split} & \int_{-\mu}^{\mu} \frac{|d\tau_{\delta}(\lambda;f,g)|}{|\lambda-l|^2} \leq \left(\int_{-\mu}^{\mu} \frac{d\tau_{\delta}(\lambda;f,f)}{|\lambda-l|^2} \right)^{\frac{1}{2}} \left(\int_{-\mu}^{\mu} \frac{d\tau_{\delta}(\lambda;g,g)}{|\lambda-l|^2} \right)^{\frac{1}{2}} \\ & \leq \left(\int_{-\infty}^{\infty} \frac{d\tau_{\delta}(\lambda;f,f)}{|\lambda-l|^2} \right)^{\frac{1}{2}} \left(\int_{-\infty}^{\infty} \frac{d\tau_{\delta}(\lambda;g,g)}{|\lambda-l|^2} \right)^{\frac{1}{2}} \\ & = \|G_{\delta}(\tilde{l})f\|_{\delta} \|G_{\delta}(\tilde{l})g\|_{\delta} \\ & \leq \|\operatorname{Im} l|^{-2} \|f\| \|g\| \,. \end{split}$$

Letting $\delta \to (a, b)$, and then $\mu \to \infty$, we see that

(4.3)
$$\int_{-\infty}^{\infty} \frac{|d\tau(\lambda; f, g)|}{|\lambda - l|^2} \le |\text{Im } l|^{-2} ||f|| ||g||,$$

thus showing the convergence of the integral on the right side of (4.1). Now let $\mu > 1 + |l|$. Then if $|\lambda| \ge \mu$, $|\lambda - l| \ge |\lambda| - |l| > 1$, or $|\lambda - l|^{-2} < 1$. Therefore

$$\begin{split} \int_{|\lambda| \, \geq \, \mu} \frac{|d\tau_{\delta}(\lambda;f,g)|}{|\lambda-l|^{\,2}} &< \int_{|\lambda| \, \geq \, \mu} |d\tau_{\delta}(\lambda;f,g)| \\ & \leq \, \mu^{-2} \int_{|\lambda| \, \geq \, \mu} \lambda^{2} \, |d\tau_{\delta}(\lambda;f,g)| \, \leq \, \mu^{-2} \! \int_{-\infty}^{\infty} \lambda^{2} \, |d\tau_{\delta}(\lambda;f,g)| \\ & \leq \, \mu^{-2} \left(\int_{-\infty}^{\infty} \lambda^{2} d\tau_{\delta}(\lambda;f,f) \right)^{\frac{1}{2}} \left(\int_{-\infty}^{\infty} \lambda^{2} d\tau_{\delta}(\lambda;g,g) \right)^{\frac{1}{2}} \\ & = \, \mu^{-2} \, \|Lf\| \, \|Lg\| \, . \end{split}$$

We then have

$$\begin{split} \Big| \int\limits_{-\infty}^{\infty} \frac{d\tau_{\delta}(\lambda;f,g)}{|\lambda-l|^2} - \int\limits_{-\infty}^{\infty} \frac{d\tau(\lambda;f,g)}{|\lambda-l|^2} \Big| \\ & \leq \Big| \int\limits_{-\mu}^{\mu} \frac{d\tau_{\delta}(\lambda;f,g)}{|\lambda-l|^2} - \int\limits_{-\infty}^{\infty} \frac{d\tau(\lambda;f,g)}{|\lambda-l|^2} \Big| + \mu^{-2} \, \|Lf\| \, \|Lg\| \, , \end{split}$$

and letting first $\delta \to (a, b)$, and then $\mu \to \infty$, we see that the right side of (4.2) tends to the right side of (4.1). This completes the proof of Theorem 3.

If $\Delta = (\mu, \lambda]$ is any finite interval let $E(\Delta) = E(\lambda) - E(\mu)$, where $E(\lambda)$ is the spectral family of projections associated with H.

THEOREM 4. If $f \in C^n$ vanishes outside a closed bounded subinterval of (a, b), and λ , μ are continuity points of $E(\lambda)$ and ϱ , then

(4.4)
$$E(\Delta)f(x) = \int_{A} \sum_{j,k=1}^{n} s_{j}(x,\sigma) \hat{f}_{k}(\sigma) d\varrho_{jk}(\sigma).$$

PROOF. We apply the known formula

$$(E(\Delta)f, g) = \lim_{\epsilon \to +0} \frac{1}{2\pi i} \int_{\mu}^{\lambda} (K(\nu + i\varepsilon)f, g) d\nu$$

to functions $f, g \in \mathbb{C}^n$ which vanish outside closed bounded subintervals of (a, b). From (4.1) we have

$$\frac{1}{2\pi i} \int_{\mu}^{\lambda} \left(K(\nu + i\varepsilon) f, g \right) d\nu = \frac{1}{\pi} \int_{\mu}^{\lambda} \left(\int_{-\infty}^{\infty} \frac{\varepsilon}{(\sigma - \nu)^2 + \varepsilon^2} d\tau(\sigma; f, g) \right) d\nu.$$

If $\xi > 2|\lambda| + 2|\mu|$, and $|\sigma| \ge \xi$, then

$$\frac{1}{(\sigma-\nu)^2+\varepsilon^2} \leq \frac{\alpha(\lambda,\mu)}{1+\sigma^2}, \quad \alpha(\lambda,\mu) = \frac{1}{(|\lambda|+|\mu|)^2}+4.$$

Thus

$$\begin{split} \int_{|\sigma| \geq \xi} \frac{|d\tau(\sigma; f, g)|}{(\sigma - \nu)^2 + \varepsilon^2} &\leq \alpha(\lambda, \mu) \int_{|\sigma| \geq \xi} \frac{|d\tau(\sigma; f, g)|}{1 + \sigma^2} \\ &\leq \alpha(\lambda, \mu) \int_{-\infty}^{\infty} \frac{|d\tau(\sigma; f, g)|}{1 + \sigma^2} \\ &\leq \alpha(\lambda, \mu) ||f|| ||g||, \end{split}$$

where the last inequality follows from (4.3) for l=i. Therefore

$$\lim_{\varepsilon \to +0} \frac{1}{2\pi i} \int_{\mu}^{\lambda} \left(K(\nu + i\varepsilon)f, g \right) d\nu$$

$$= \frac{1}{\pi} \int_{|\sigma| \le \varepsilon} \lim_{\varepsilon \to +0} \left[\arctan\left(\frac{\lambda - \sigma}{\varepsilon}\right) - \arctan\left(\frac{\mu - \sigma}{\varepsilon}\right) \right] d\tau(\sigma; f, g)$$

$$= \int_{\mu}^{\lambda} d\tau(\sigma; f, g) ,$$

proving that

$$egin{aligned} ig(E(arDelta)f,gig) &= \int\limits_{arDelta} d au(\sigma;f,g) \ &= \int\limits_{arDelta} igg(\int\limits_{arDelta} \sum\limits_{j,\,\,k=1}^n s_j(x,\,\sigma) \widehat{f}_k(\sigma) \,\,darrho_{jk}(\sigma)igg) \,\overline{g(x)} \,\,dx \;, \end{aligned}$$

where g vanishes outside δ_0 . This readily implies (4.4).

Let $\zeta = (\zeta_1, \ldots, \zeta_n)$, $\eta = (\eta_1, \ldots, \eta_n)$ be vector functions of λ , and introduce the inner product

$$(\zeta, \eta) = \int_{-\infty}^{\infty} \sum_{j, k=1}^{n} \overline{\eta_{j}(\lambda)} \, \zeta_{k}(\lambda) \, d\varrho_{jk}(\lambda)$$

and norm $\|\zeta\| = (\zeta, \zeta)^{\frac{1}{2}}$. Let $\mathfrak{L}^2(\varrho)$ be the Hilbert space of all ζ , measurable with respect to ϱ , such that $\|\zeta\| < \infty$.

Theorem 5. If $f \in \Omega^2(a, b)$ the vector $\hat{f} = (\hat{f}_i)$, where

$$\widehat{f}_{j}(\lambda) = \int_{a}^{b} f(x) \overline{s_{j}(x, \lambda)} \, dx \,,$$

converges in norm in $\mathfrak{L}^2(\varrho)$, and

$$||f|| = ||\hat{f}||$$
 (Parseval equality).

In terms of this \hat{f} ,

$$f(x) = \int_{-j}^{\infty} \sum_{k=1}^{n} s_j(x, \lambda) \hat{f}_k(\lambda) d\varrho_{jk}(\lambda)$$
 (Expansion theorem),

where the integral converges in norm in $\Omega^2(a, b)$.

PROOF. Let $f \in C^n$ and vanish outside a closed bounded subinterval of (a, b). The Parseval equality for f results from (4.4) and the fact that $(E(\Delta)f, f) \to ||f||^2$ as $\Delta \to (-\infty, \infty)$. The expansion theorem for f results since $||f - E(\Delta)f|| \to 0$ as $\Delta \to (-\infty, \infty)$. The denseness of these f in $\mathfrak{L}^2(a, b)$ allows one to extend these results to all of $\mathfrak{L}^2(a, b)$.

REFERENCES

- E. A. Coddington, The spectral matrix and Green's function for singular self-adjoint boundary value problems, Canadian J. Math. 6 (1954), 169-185.
- E. A. Coddington, The spectral representation of ordinary self-adjoint differential operators, Ann. of Math. 60 (1954), 192-211.

UNIVERSITY OF COPENHAGEN, DENMARK

UNIVERSITY OF CALIFORNIA, LOS ANGELES, U.S.A.