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ON A THEOREM OF F. RIESZ

BENT FUGLEDE

Introduction.

The following characterization of the indefinite integral of functions
from the class L? corresponding to an interval (a, b), finite or infinite,
was given in 1910 by F. Riesz [4, in particular § 5]:

Let 1 <p<oo. In order that a function ¢(x) be an indefinite integral of
some function f(x) from the class L?, it is necessary and sufficient that the
sum

3

o lo(x,) — o, _)|P
u‘;;.(l1 (xw - xv—-l)p‘l

where aS<xy<x;<...<x,=b, is bounded by some constant ¢ independent
of the number and the location of the points of division x,.—Moreover, in
the affirmative case, the smallest possible value of ¢ is

b

{ir@ye ds.

a

This result may be generalized in various directions, as it will be
shown in the present paper. In the first place, Lebesgue measure on
the interval (a, b) may be replaced by an arbitrary measure u in an ab-
stract space X. The differences p(z’) — p(x’'’), corresponding to subinter-
vals (', z’’), should be replaced by the values of an additive set-function
¢(A4) defined on a system U of u-measurable subsets of X. Under certain
natural assumptions concerning the system %[, one may prove Theorem
I of Section 2.1 which is a direct generalization of Riesz’ theorem!.
Various definitions and well-known results from abstract measure theory,
which will be used in the proof of Theorem I, are collected in Section 1.

Received August 30, 1955.

1In a recent article, R. E. Fullerton [1] has likewise treated the question of an abstract
form of Riesz’ theorem. His result in this direction may be described as the special case
of our Theorem I (cf. 2.1) in which % consists of all measurable subsets of X, i.e. =M.
Thus Fullerton's result does not contain the classical theorem of Riesz, in which 2 con-
sists merely of all (half-open) subintervals of (a, b), whereas I is the system of Borel
subsets of (a, b).
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Secondly, it is easy to show that a quite similar result holds for systems
of set-functions, or, in other words, set-functions whose values, instead
of being real or complex numbers, are points (vectors) in a Euclidean
space R* of arbitrary dimension k (cf. Section 4.1). And, finally, the
classes L? may be replaced (cf. Section 4.2) by more general classes of
functions (with values in R*). Corresponding to a real-valued function
F@y=F(t", ...,t*) defined in R* we may introduce the class Ly (with
respect to a measure u in X) of u-measurable functions f(x) defined in
X (and with values in R¥), for which

SF(f(x)) #(dX) < oo.

X

Under the additional assumptions that F(t) is convexr and that
F)/|t] > +oc as |t] >,

we shall obtain a result (Theorem IV) quite analogous to Theorem I.
(Here |¢| denotes the Euclidean norm [t] =((f)%+ . .. + (t*)%)"2)

For the sake of completeness, we have included (Section 3) a treatment
of the corresponding problem for the extreme cases p=oco and p=1 of
the LP-classes. The case p=oo is similar to the case 1< p< oo, whereas
the case p=1, as well known, is of an essentially different character
even in the classical situation of Riesz’ theorem: functions of a real
variable with Lebesgue measure. The condition in Riesz’ theorem ex-
presses, for p=1, merely that ¢(x) is of bounded variation. Thus it
becomes necessary to add, as a further condition, that ¢ is absolutely
continuous in the sense that there exists, corresponding to every >0,
a 6> 0 with the property that

g: lp(b,) —g(@,)] < &

for every finite system of mutually disjoint subintervals (a,, b,), ...
(a,, b,) of (a, b) for which

3 (,-a)<38.
v=1

Theorem III is a generalization of this well-known result to the abstract
situation. Closely related theorems have appeared in the literature (for
example the theorem on p. 34 in B. Jessen [3]).

The results of the present paper were developed primarily in view of
an application thereof in determining the structure of the functions which
constitute the domain of the closure of a linear partial differential
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operator with constant coefficients. A separate publication concerning
this problem is under preparation.

1. Auxiliary concepts and results from measure theory.

1.1. Operations with sets. We consider subsets of a fixed set X. The
empty set is denoted by 0. The union, intersection, and difference of
sets will be denoted by U, N, and —, respectively. (The difference 4 —B
is to be defined even when B is not a subset of 4). When 4, 4,, 4,, ...
are subsets of X, we write 4, - 4 if the characteristic function a,(x)
of A4, converges to the characteristic function a(x) of 4 at every point
zeX when n—>o. If 4,- 4 and B, —~ B, then 4,UB, -~ AUB,
A,nB, >AnB,and 4,— B, -~ A—B. Thesymbols 4, + 4and 4, | 4
shall denote that the sequence {4,} increases, respectively decreases, and
that U, 4,=4,resp. N, 4,=4. 1f A4, + Aorif 4, | A4, then 4, > A.

1.2. Systems of sets. When ¥ is a system of sets (subsets of X), we
shall denote by %, resp. ,, the system of all unions, resp. intersections,
of countable systems of sets from 9. Clearly, %, resp. %,, is closed under
the formation of countable unions, resp. intersections, that is, %A, =,
and W, =Ws. If A is closed under the formation of finite unions (inter-
sections), then each set from %, (A;) may be represented as the union
(intersection) of an increasing (a decreasing) sequence of sets from .
Using this remark, it is easy to show that if U is closed under the forma-
tion of finite unions and intersections, then the same is true of 9, and of
Ay, and hence also of A ; and A,,, ete. This applies, in particular, to a
field &, that is, a (non empty) system of subsets of X which is closed
under the formation of differences and of finite unions (and hence also
of finite intersections). If Ae@, and Be,;, then A—Be, and
B—A4 € F,, as it may be easily shown. Similarly, if 4eg,, and Be F,,,
then A —Be &, and B— A4 € §,,, ete.

A field § which is closed under the formation of countable unions is
called a o-field; it is also closed under the formation of countable inter-
sections. Thus F=F,=F;=F,s etc. For any system A, the intersec-
tion of all o-fields that contain % is itself a o-field. We call it the o-field
generated by .

1.3. Set-functions. We shall consider set-functions whose values are
either finite complex (in particular finite real) numbers, or non-negative
real numbers in which case the value + oo is admitted. The system of
sets at which a set-function ¢ is defined is called the domain of p. We
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call ¢ bounded if there is a finite constant ¢ so that |p(4)| £ ¢ for every
A in the domain of ¢. A set-function ¢ is called additive if p(4) =2, ¢(4,)
whenever A is the union of a finite system of mutually disjoint sets 4,
and 4 and each 4, belong to the domain of ¢. If a similar statement
holds even for countable unions of disjoint sets, then ¢ is called countably
additive.

The real part ¢, and the imaginary part ¢, of a set-function ¢ are
again set-functions with the same domain, and each of the properties:
boundedness, additivity, or countable additivity applies to ¢, and g, if,
and only if, it applies to ¢. Consider now a bounded additive real-valued
set-function ¢ defined on a field §, and define, for each Aeg,
g+(4)=sup ¢(B) and ¢—(4)=infp(B), where B ranges over all subsets of
A which belong to §. It is easily proved that ¢+ and ¢— are likewise
bounded additive set-functions on % (Cf. B. Jessen [3, section 3.2]).
Moreover, for every Aey, we have ¢(d)=¢p+(4)+¢~(4); ¢+H(4)=0;
¢~ (4)=0. If ¢ is countably additive, then so are ¢* and ¢—.—More
generally, every complex-valued bounded additive set-function ¢ de-
fined on a field § may be represented as @=¢,* + @, ~+ip,t+ip,,
where ¢;+, —@;~, @,*, and — ¢, are non-negative bounded additive set-
functions (i.e. bounded contents) on . If @ is even countably additive,
then so are the four ‘‘components”, and if, in addition, & is a o-field,
then the four components are bounded measures; (cf. the following
definitions).

An additive set-function y is called a content if the domain is a field ,
if the values are non-negative (the value + oo being admitted), and if
finally u is o-finite, whereby is meant that each set Ae & for which
u(d)= +oco (if any such set exists) may be covered by a countable
system of sets from & at each of which u takes a finite value. A count-
ably additive set-function p is called a measure if the domain is a o-field,
if the values are non-negative (the value + oo being admitted), and if u
is o-finite.

1.4. Extension theorems. A basic theorem in measure theory asserts
that every countably additive content x may be extended in just one
way to a measure whose domain is the g-field It generated by the domain
& of the given content. (Cf. B. Jessen [3, section 1.5].) The extension
is given by the formula

w(d) = inf 3'u(4,), AdeM,

where the infimum is formed with respect to all sequences of sets 4,
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for which A<U,A4,. It suffices, however, to consider coverings by
mutually disjoint sets 4,e&. Then

3 u(d,) = lim S ud) = hm,u(U A)

n—>o00 r=1 n—> 00 v=1
so that, in particular, the extension is bounded if the given content is
bounded.

A similar extension theorem subsists for bounded complex-valued (in
particular real-valued) set-functions: A bounded and countably addi-
tive set-function ¢ defined on a field ¢ may be extended in just one way
to a bounded and countably additive set-function defined on the o-field
generated by . In the proof of this theorem one may utilize the de-
composition g=g;*+@;~+ipyt+ip,~. (Cf. B. Jessen [3, section 3.3].)

1.5. Conditions for countable additivity. If ¢ is a finite (complex- or
real-valued) additive set-function defined on a field ¥, then each of the
following two conditions is necessary and sufficient in order that ¢ be
countably additive:

a) @¢(4,) ~ p(4) whenever 4, + A, and 4 and each 4, belong to .
b) ¢(4,) — 0 whenever 4, | O and each 4, .

If, in addition, ¢ is bounded, then the following condition is necessary
(and sufficient) for ¢ to be countably additive:

c) ¢p(4,) > ¢(4) whenever 4, > 4, and 4 and each 4, belong to .

As to the necessity of this last condition, the assumption that ¢ is count-
ably additive implies that ¢ may be extended to a bounded, countably
additive set-function defined on the o-field M generated by F. In view
of the decomposition ¢ =@+ @, +ip,++ip,~, it suffices to discuss the
special case where ¢ on I is non-negative, i.e. a bounded measure u.
Now, the characteristic function a,(z) of 4, converges to the character-
istic funetion a(z) of 4 at every point x of the set £=U, 4,eIM, whose
measure is finite. From Lebesgue’s theorem on term by term integra-
tion (cf. B. Jessen [3, section 2.4, statement j]), it follows that

{ 0u(o) @) > ate) wiax)
E E
that is, u(4,) = n(4).

1.6. Hull and kernel. Let u be a countably additive content with the
domain §. The extension of u to a measure on the o-field M generated
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by & will likewise be denoted by u. From the formula given in Section
1.4 for this extension it follows for every AeIN that w(d4)=infu(B)
where B ranges over those sets from {, that contain 4. In fact, §,
is the system of all countable unions of mutually disjoint sets from .
We infer now easily the existence of a “hull’”’ for A (with respect to u),
that is, a set A€ ,, such that 4>4 and u(d—A4)=0. (If p(4)= +oo,
the o-finiteness of x4 together with the fact that §,,= &, must be taken
into account in order to determine sets Be{, for which B> 4 and u(B — A4)
is arbitrarily small.}—Similarly we may determine a ‘“kernel” for A,
that is, a set Ae,, for which A=A and p(4d—-A4)=0. In fact, let
Be@, BoA, and u(B—A4)<oo. Let Heg,s be a hull for B—A4. Then
B—H € ,, is easily shown to be a kernel for 4.

More generally, let a finite (or denumerably infinite) system of count-
ably additive contents u,, u,, ... be given, each with the domain .
Let 4,, 4, ... € §,, be hulls and 4,, 4,, ... € §,, be kernels for a set
AeIM with respect to the extensions of yy, u,, ... from ¥ to measures
on M (the o-field generated by §). Then A =0, 4, € F =T, is a hull
and 4=U, 4, € Fs,.=Fs, is a kernel for 4 with respect to all the meas-
ures Yy, s, - .. simultaneously.—If ¢ is a bounded, countably additive
set-function defined on the field &, it follows at once from this remark,
in view of the decomposition ¢=g,*+@,~+i@,*+ip,~, that there ex-
ist for every set AeIt a hull A F,, and a kernel Ae,, for 4 (with
respect to the extension of ¢ to M), in the sense that AcA<4 and
¢(4)=p(4)=p(4). And if there is given, besides @, a content u as
above, then 4 and 4 may be chosen so as to be a hull and a kernel for
A with respect to the extensions of ¢ and yx simultaneously.

1.7. The LP-classes. Let u be a measure in X defined on a o-field I,
and let 1 Sp<oo. If eI, we denote by LP(E) or LP(E, I, u) the class
of u-measurable functions f(x), defined in E, for which

{r@P uax) < .

B
By L*(E) we denote the class of y-measurable functions that are defined
and essentially bounded in Z. In both cases, it suffices that the function
be defined almost everywhere (a.e.) in F (instead of everywhere in E).
By almost everywhere is meant: everywhere except in some u-measurable
set whose measure u is zero. A u-measurable function f(x) is called
essentially bounded in E if there is a finite constant ¢ with the property
that the inequality |f(z)| <c holds a.e. in . The smallest such constant
is denoted by ess sup, . p|f(®)| (essential supremum).—A measurable func-
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tion is said to be essentially uniquely determined when subjected to cer-
tain conditions, if any two measurable functions that satisfy the condi-
tions are equal a.e.

1.8. The Radon-Nikodym theorem. Given a measure y in X defined on
a g-field 9, and a bounded, countably additive set-function ¢, likewise
with the domain Jt. Assume that Xet. We say that ¢ is continuous
with respect to p (or simply: p-continuous) if p(A)=0 when 4N and
m(A)=0. A function fe L(X,IM, 1) is called a derivative of ¢ with respect
to u if
p(4) = ﬁf(x) u(@dX) forevery AeM.

A

The Radon-Nikodym theorem (cf. B. Jessen [3, the theorem on p. 36])
asserts that ¢ possesses a derivative with respect to u if, and only if,
@ is u-continuous; the derivative is then essentially uniquely determined
in X.

2. An abstract form of F. Riesz’ theorem.

2.1. Let x be a measure (defined on a o-field M of subsets of a fixed
set X), and assume that Xe9N. Let ¢ be a complex-valued additive
set-function defined on such a system A <IN that all finite unions of
disjoint sets from A, together with the empty set O, form a field®

which generates . Finally, it is assumed that 0<u(4)< o for every
AeU. Then Riesz’ theorem may be generalized as follows:

THEOREM I. Let l1<p<oco. In order that there exist a function
f(x)eLP(X, I, u) with the property that

p(4) = Sf(x),u(dX) for every Ae¥,
A

it 18 mecessary and sufficient that there is a finite constant c¢ so that the

inequality " oA
™ N e

holds for every finite system of disjoint sets A,, A,, ..., A, from A.—The
function f is then essentially uniquely determined, and the smallest possible
value of c is \x|f(2)|P p(dX).

2 In order that the system § consisting of O and all finite unions of disjoint sets from
A be a field, it is necessary and sufficient that ANB€E F and 4 —B e § whenever 4 €Y
and Be 9, as it is easily shown. Clearly, this holds, in particular, if AU {0} is a field.

Math. Scand. 3. 19
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2.2. As to the necessity of the condition, let fe L?(X, IR, x), and let

o(4) = gf(x) w(dX)  forevery Ae¥.

Since pu(4)<oo, it follows from Hdlder’s inequality (cf. Hardy-Little-
wood-Polya [2], Theorem 189, p. 140) that fe L}(4) and that

pla)e < p(ap | 7@ ).
A

This implies, with the notations employed in the formulation of the
theorem, that

o AP
2oaris ASva(x)I” p(dX) §§ @ uaX) .

The condition is thus necessary, and the last integral may serve as the
constant ¢ in the inequality (*).

2.3. Concerning the sufficiency of the condition (*), we observe that
@ may be extended to an additive set-function on the field & as follows.
If Ae§, then either A =0, or A is the union of a finite system of dis-
joint sets A,, 4,, ..., 4, from A. In the first case we define p(4)=0;
in the second case we define p(4)=2,¢(4,), but it must then be verified
that this sum is independent of the particular way in which 4 is composed
of sets from . Let B, ..., B, likewise be disjoint sets from U with the
union 4. Then 4=U, ,(4,nB,), where A,nB, belongs to & and hence,
if not empty, is the union of some disjoint sets &, , ;, ..., K, , , from .
Thus 4,=U,(4,nB,)=U, E,, . and B,=U,(4,nB)=U, E,, .. By
virtue of the additivity of ¢ (on ), it follows that 2Z,¢(4,) =
ZQ,U,T¢(EQ,O',T) = 20’¢(BG)'

We shall now estimate ¢(4) when 4 €  (and A +=0). Let A be the union
of disjoint sets 4,, ..., 4, from 2. For abbreviation, put q,=pu(4,)/u(4)
andt,=@(4,)/(4,), 0=1,2,...,7. Theng,>0, 2 q,=1,and ¢p(4)/u(4)=
2,p(4,) u(d)=2,q,t, is the mean of order 1 of the numbers #, with the
weights g,. From Holder’s inequality (cf. Hardy-Littlewood-Pélya [2,
Theorem 13, p. 24]), or, more directly, Schlomilch’ inequality between
means of different orders ([2, Theorem 16, p. 26]), it follows that

pr
u(dy-i ~ 1A | Z 0t

" lp(4,)1P
g p(Adp-t

P r
S u(d) 3 qlt|P =
e=1

It is now apparent that the inequality (*) remains valid (with the same
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constant c) for disjoint non-empty sets 4,, ..., 4, from §. In fact,
let A, be the union of disjoint sets 4, ,, ..., 4, , from A. Then

% (A n A
oo )l 22='|¢( vo)l?

p= lfu(A v= )p -1

II/\

¢,

the r,+ ... +r, sets 4,  from A being mutually disjoint.

The additive set-function ¢ on the field ¥ is even countably additive.
Let A,e® and 4, | O (cf. Section 1.5, condition b); then u(4,) — 0,
since u is finite on U and hence on §&. Applying the inequality (*) to
one single set Ae ¥, we obtain |p(4)|P<cu(d)?-!; this holds even if
A=0. Taking A=A, and making n - oo, we conclude that p(4,) > 0;
q.e.d.

In the rest of the proof of Theorem I, we distinguish the cases
u(X) < oo and p(X)=oo.

2.4. The case u(X) <oo. In this case, ¢ is bounded. For every Ae @
we have |p(d4)| S cV/P u(A)-1p < cV/p yu(X)1-1/», The unique extension (cf.
1.4) of ¢ to a bounded, countably additive set-function on It will like-
wise be denoted by ¢. We propose to verify that the inequality (*)
remains valid (with the same constant ¢) when the disjoint sets
A,, ..., A, belong to M and have positive measures. Instead of passing
directly from & to M, we begin by assuming that 4,, ..., 4, belong to
e (cf. 1.2). Let 4, , | A ,as ¢ > o0, 4, €F,v=1,2,...,n Theslight
difficulty that the n sets 4, ,, for given ¢, cannot be expected to be
mutually disjoint, is easily overcome by replacing them by new sets
B, €& as follows: B, =4, —U, 4, ,. For fixed g, these n sets are
mutually disjoint; for fixed v, B, , > 4,-U,,,4,=4, as ¢ > . Hence
?(B, ) - ¢(4,) and u(B, ;) - u(4,), by virtue of 1.5, condition ¢, applied
to ¢ and to u. Consequently, u(B, ;) >0 for every » and all sufficiently
large values of ¢, and the desired inequality (*) for the sets 4,, ..., 4,
follows from the corresponding inequality for the sets B, ,, ..., B, ,
from { by letting ¢ - o. In a similar manner, it may be proved that
@(4)=0 when 4e{, and u(4d)=0.—Next, let 4,, ..., 4, be disjoint
sets from I, each of positive measure. For each »=1, 2, ..., n, choose
a kernel 4, e &,, for A with respect to ¢ and x simultaneously (cf. 1.6),
and let 4, , + A,, whereby each 4, , should belong to {,. For each g,
the n sets 4, ; are mutually disjoint, and if ¢ is sufficiently large, they
have positive measures since u(4, ,) - u(4,)=u(4,)>0. The desired
inequality (*) for the sets 4,, ..., 4, from MM follows from the corre-
sponding inequality for the sets 4, ,, ..., 4, , by letting ¢ - co. Like-

19*
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wise, it is shown that ¢ is continuous with respect to u, that is, p(4)=0
when Ae and u(4)=0.

To the bounded, countably additive, and u-continuous set-function ¢
defined on the o-field 9N, there corresponds, by the Radon-Nikodym
theorem (cf. Section 1.8), a complex-valued function f(x) € LY(X, M, u)
with the property that

p(4) = Sf(a:) u(dX)  for every AeI
A

(in particular for 4e%). It remains to be proved that fe LP(X, M, u),

and that
(1@ wex) s e

X

For a given natural number n, divide the complex plane into equal
disjoint (half-open) squares Sy, k=1, 2, ..., each with the diagonal 1/n.
Denote by A, the set of points xeX for which f(z)eS,. Each xeX
belongs to just one of these sets A4, ; if u(4,)>0, define

fal@) = mdR) 9 ) = w49~ | £(o) udX).
Ak

This mean-value of f(x) over 4, belongs to S, since a square is convex.
The function f,(z) is thus defined a.e. in X, and the inequality
[fo(x) —f(x)] £1/n subsists a.e. in X. Hence, [f,(x)|? > |f(z)]? a.e. in X
as n — co. Now,

| lru@) wdX) = Zi g iPlu(dr,
X

the prime indicating that the summation is to be restricted to those
values of k for which u(4;)>0. As each partial sum on the right is
bounded by ¢, we conclude that

(1@ wax) s o
X

Letting » - oo, it follows from Fatou’s theorem that

{ 1@ w@x) s tming, { 17,@IP wax) < ¢
X X

We have now, for the case u(X)< oo, established the existence of a
function f with the desired properties. Suppose that g is another func-
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tion possessing these properties. Then gell(X) since geL?P(X) and
(X)) <oco. Further,

Sf(x) uwdX) = Sg(ac) u(@X) forevery Ade¥U,
- 3

both integrals being equal to ¢(4). Clearly, the two integrals are equal
also when 4 €g. They even coincide when 4 e I, since they both determ-
ine the unique extension of the bounded, countably additive set-func-
tion @ from the field {§ to the o-field M generated by . Hence f and g
are both derivatives of p with respect to u, so that f(x)=g(x) a.e. in X.

2.5. The case pu(X)=oo. As to the sufficiency of the condition of Theo-
rem I, it was proved in Section 2.3 that the set-function ¢ on 2, satisfying
the condition of the theorem, may be extended to a countably additive
set-function @ on the field ¥, and the inequality (*) remains valid.
Since X belongs to I, it may be covered by a sequence of sets X, e .
(In fact, the system of those subsets of X that have this covering prop-
erty, is a o-field which contains & and hence contains t.) We may even
choose a sequence of sets X, € so that X, - X as n > co. Denote by
&, and M, the systems of subsets of X, which belong to & and to M,
respectively. Then ¢ and g, considered on ¥, — {0} and I, (instead of
A and ), respectively, satisfy the condition of the theorem as well as
the assumptions preceding it. Since u(X,) < oo, it follows from 2.4 that
there exists a function f, e L?(X,, MM, u) with the properties that

#4) = \fu@) wdX)  forevery e,
A
and that

{ @i @) < o
Xn

In view of the uniqueness of f in the case u(X) < oo, it follows for m>n
that f,,(x)=f,(z) a.e. in X,,. Hence, there exists a u-measurable function
f, defined in X, for which f,(z)=f(x) a.e. in X,. Consequently,

\r@P wax) = § 1fu@P wax) s o,
in, Xn
from which it follows, by letting » — o, that

feIPX, M, u)  and that {|f@) u(@dX) < o.
X
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In particular, if A€, then fe LY(4, M, u) since u(4) < co. Thus

{r@uax) < tim {16 wax) = lim pan x,) = pa)
A n—> oo Aan n—> o0

since ¢ is countably additive, as it was shown in 2.3.

It remains to be proved (in the case p(X)=oo) that f is essentially
uniquely determined. With the above notations, it follows, however,
easily from the uniqueness result at the end of Section 2.4 that f is
essentially uniquely determined in each X, and hence also in X.

2.6. Remark 1 (to Theorem I). The requirement that p(4)> 0 for every
Ae U (and hence for every Ae & — {0}) may be abolished if, at the same
time, the inequality (*) of p. 289 is marntained for all finite systems of
disjoint sets from W of positive measure, and if it is added, moreover, that
p(A)=0 when AcW and u(A)=0. In fact, with this interpretation the
condition (*) remains necessary, since the proof in Section 2.2 involving
Hoélder’s inequality works as before when the measures of 4,, ..., 4,
are positive; and clearly

\f@) uax) =0 when () =0,
A

As to the sufficiency, there is no change to be made in the proof (from
Section 2.3) that the additive set-function ¢ may be extended from A
to &, whereas the proof that the condition (*) in its new interpretation
remains valid for ¢ on § requires only little modification: Evidently,
p(4)=0if AeF and u(4)=0. Andif 4,, ..., 4, are disjoint sets from
%, each of positive measure, then we divide again each 4, into mutually
disjoint sets 4, , from A. In estimating p(4,), we may then neglect such
sets A, , for which u(4, ) =0, since (4, ,) =0, too.—It follows, as before,
that ¢ on & is countably additive. In the case u(X)< oo it is proved
just like in Section 2.4 that the condition (*) (now in its new interpreta-
tion) remains fulfilled for the extension of ¢ from F to M. From this
point, the proof continues precisely as before, also in the case u(X)=cs.

Without this additional requirement that @(4)=0 when p(4)=0
(AeN), the condition (*) would no longer be sufficient in general (when
we admit sets of measure zero in ), even if A together with O is a o-field
M. (This fact seems to have been overlooked in Fullerton [1].) As an
example, let X consist of just two points #, and x,, let 9 consist of the
sets {z,}, {,}, and X, so that M =all four subsets of X. Let x and ¢

be given by p({2:1}) =0, p({z1}) = 1; p({z2}) = L, p({22}) = 0; p(X) = (X) =1.
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Then the inequality (*) subsists with ¢=1, for any p, 1 <p<oo. Never-
theless ¢({z,})=1, although u({z,})=0.

2.7. Remark 2 (to Theorem I). A special consequence of the condition
(*) of Theorem I is that |@p(4)| <P u(A)-1/? for every Ae. Even if
A together with O is a field (=), this special inequality ¢s, however,
not a sufficient condition. As an example, let X be the interval O <z <1;
let & be all finite unions of intervals of the form a <x<b contained in
X, together with the empty set; let u be the Borel measure in X ; and let

@(4) = Sx—“l’dm

A

for every 4 from the field . Since z-1? is a decreasing positive func-

tion, we have
wd)

0= g(d) = S Y2 dx = [p/(p—1)]u(d)1-1P .

0

Nevertheless, the derivative =17 of ¢ with respect to u is not in the class
LP(X).

3. The extreme cases p=c and p=1.

3.1. The case p=cc. Under the same assumptions as for the case
1< p< oo (see Section 2.1), except that we now, like in Remark 1, admit
sets of measure zero in 9, the following result may be obtained:

THEOREM IL. In order that there exist a bounded, u-measurable function
f(x), defined in X, with the property that

pd) = gf(x),u(dX) for every Ae¥,
A

it is necessary and sufficient that there is a finite constant ¢ so that the
inequality
lp(4)] = cu(4)

holds for every set AeW.— The function f is then essentially uniquely
determined, and the smallest possible value of ¢ is ess sup,.x|f ()|

A proof of this theorem may be obtained from the proof of Theorem I

in the version described in Remark 1 (see 2.6), by obvious modifications.

3.2. The case p=1. This second limiting case is essentially different
from the case 1<p<oo. Again, we do not assume that u(4)>0 for
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AeN, but otherwise the assumptions are the same as in Theorem I
(see Section 2.1). The result is:

TuaroreM II1. In order thai there exist a function f(x) € LM X, M, u) with
the property that

p(d) = Sf(:c),u(dX) for every Ae,
a

the following two conditions are necessary and, when combined, sufficient:

1° To every mwmber ¢> 0 there corresponds a number 6>0 with the
property that 27_, |@(A,)| < e for every finite system of disjoint sets A, . . .,
A, from U for which 2™, u(4,) <.

2° There is a finite constant ¢ with the property that 2™ |o(4,)|<c
for every finite system of disjoint sets 4,, ..., A, from U.

The function f is then essentially uniquely determined, and the smallest
possible value of ¢ in condition 2° is \x |f(x)| u(dX).

Under the additional assumption that u(X) < oo, condition 2° is a conse-
quence of conditton 1°.

3.3. The necessity of condition 2° is immediately verified together with
the fact that {x|f(x)| u(dX) may serve as the constant c¢. That condition 1°
is necessary may be shown as follows. Introduce the set X, of points
xzeX at which |f(z)|>m, m=1,2, .... Then E, e M and u(%,,) < o since
fe L{(X, M, u). Moreover, as m — oo, we have E,, | O; hence, by
Lebesgue’s theorem on term by term integration,

§ir@iuan ~ 0.

By,
To any given ¢>0, we may, therefore, choose m so large that

{ 7@ pax) < ef2.

Em
Now, let 4,, ..., 4, be disjoint sets from ¥, and assume that

‘_‘,:M(Ay) < ¢/(2m) (=9).
The union 4 =U?_, 4, belongs to M, and u(A4)<d. Hence,

2wl s 3 @) pax) = (1@ wax)

p=1 A, M

€
= + <3 + mu(d) < e.
ANEm A-Ep
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3.4. The sufficiency of the two combined conditions 1° and 2° may be
proved in the following way. First, the additive set-function ¢ may be
extended from ¥ to ¥, and the two conditions remain valid for p on .
This is shown in a straightforward way. Condition 2° implies that ¢ is
bounded on &, whereas condition 1 implies that ¢ is countably additive
on & (in view of condition b from Section 1.5). By the method from the
proof of Theorem I (see Section 2.4), it is proved, next, that the extension
of ¢ from ¥ to M satisfies conditions 1° and 2° with the same constant
¢ (in 2°) and the same & corresponding to a given ¢ (in 1°). From condi-
tion 1° for @ on IN it follows, in particular, that ¢ is u-continuous. By
the Radon-Nikodym theorem (see Section 1.8), ¢ possesses a derivative
f with respect to u. Like in Section 2.4, it is shown that

{ /@)l wax) 5 o
X

and that f is essentially uniquely determined.

3.5. Let u(X) < o0, and let ¢ satisfy condition 1° on %. Again, ¢ may
be extended to an additive set-function defined on the field ¥, and
condition 1° remains valid. From Remark 3 (see below), it follows that
condition 2° will be satisfied (with some value of ¢) for ¢ on & if we can
prove that ¢ is a bounded set-function on &. Assume that, on the
contrary, ¢ is unbounded on §. Corresponding to any natural number #,
we shall determine a system of n disjoint sets 4,, ..., 4, from § with
the property that |p(4,)| >1,v=1, 2, ..., n. When = is sufficiently large,
the measure u(4,) will, for some value of », be smaller than the number
6 which corresponds to e=1 in condition 1°; and thus we arrive at a
contradiction. It remains to be proved, under the hypothesis that ¢ be
unbounded on {, that a system of » sets of the desired kind exists for
every natural number n. Proceeding by induction, we choose such a
system of n sets 4,, ..., 4, and also a set He @ for which

lp(B) > 1 + §(|¢(A,)]+1).

With the abbreviation End,=E,, v=1,2, ...,n, we have E=U! K,
where By < X-U"  4,. It follows that either |p(E,)|>1 or else
l9(&,)] > |p(4,)] +1 for at least one value of »=1. In the first case, we
obtain a system of n+1 sets of the desired kind by adding E, to the
system 4,, ..., 4,. In the second case, we replace 4, by the two sets
E,and 4,—E,; in fact

lp(4,-E,)| = lp(4,)—¢E,) 2 |o&,)|—lp(4,)] > 1.
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3.6. Remark 3 (to Theorem III). If U (or just A together with O) is a
field (=), then conditions 1° and 2° may be replaced by the following
two simpler conditions, in which only single sets 4 € enter:

1’. To every £ >0 corresponds a "> 0 so that |p(4)| <& when u(d)<d'.
2. The set-function ¢ is bounded, say |p(4)/<c’.

The smallest possible value of ¢’ in condition 2’ is <{x|f(z)|u(dX),
but the sign of equality applies only if ¢ is of constant argument (when
sets for which ¢ is zero are neglected). If @ is real-valued, the smallest
possible value of ¢’ is

max[ \rr@uax),§ —f‘(w)u(dX)}, where f(z) = f*(@)+/ (@)

X X

is a decomposition of f (which may be chosen as real-valued) into a non-
negative and a non-positive part.

In the proof that conditions 1’ and 2’ imply conditions 1 and 2,
respectively, when % (or €u{0}) is a field ¥, it suffices to consider the
case where @ is real-valued. If 4,, ..., 4, are disjoint sets from g,
then the union A, respectively A~, of those sets 4, for which ¢(4,) =0,
resp. <0, is likewise a set from &, and

n

n
uA)+ud7) = X pd,);  pdT)—pd) = 24, .
v=1 p=1
Applying conditions 1’ and 2" to A" and A~, we infer that, first,
2" |p(4,)] < 2eif u(AT) < § and u(A~) < d', in particular if 27 u(4,)<d';
and, secondly, 2”_,|p(4,)| < 2¢’.—The statements concerning the smallest
possible value of ¢’ are easily verified.

4. Extension to more general classes of functions.

4.1. The only property of the complex numbers which is relevant in
the preceding theorems is that they represent the points of the Euclidean
plane. It is straightforward to verify that instead of complex-valued set-
functions ¢(4) and point-functions f(r) one might just as well consider
set-functions and point-functions whose values are points t= (¢, ..., t¥)
in Euclidean k-dimensional space R*; k=1, 2, .... (In other words, the
values are vectors in the k-dimensional real vector space with the norm
[t] =(()?+ ...+ (t*)*)2. This norm replaces, then, the absolute value
of a complex number.) The properties: boundedness, additivity, or
countable additivity, are defined for such set-functions in obvious ana-
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logy to the complex-valued case (cf. Section 1.3), and the extension
theorem remains valid, as well as the conditions for countable additivity
and the results about hull and kernel (cf. Sections 1.4, 1.5, and 1.6).
A function f(r) with values in R is called p-measurable if its domain
of definition ¥ belongs to M and if each co-ordinate f®, (x=1, 2, ..., k),
is u-measurable. The class LP(H, M, p) is characterized by the addi-
tional requirement that

{r@pr uax) < .
E

Theorems I, II, and III, and the remarks 1, 2, and 3, subsist with un-
changed proofs.

4.2. A somewhat less obvious, further generalization arises when the
classes L? are replaced by more general classes of functions. Consider a
real-valued continuous convex function F(t), defined in R*, with the
property that F(t) - + oo as [t] — oo. By Ly(E)=Ly(E, M, u) we under-
stand the class of u-measurable functions (with values in R¥), defined
a.e. in ¥ and subjected to the condition that

{ (@) max) < .

E

(Thus the classes LP, 1<p<oo, correspond to the special functions
F(t)=|t|?.) It follows from the properties of F(t) that

liminf F(t)/|t] > 0,

[t] > o
from which we shall infer presently that Lj(#)< LX) when u(E) < .
Moreover, the convexity of F(#) will replace the special cases of
Holder’s inequality which were used in the previous proofs. Under the
turther assumption that F(#)/|¢| = + oo as |¢| - o, we shall obtain a result
quite analogous to Theorem I (and containing this theorem as a special
case corresponding to the function F(¢)=|t|?, 1<p< ). With the as-
sumptions and notations introduced in connection with Theorem I (cf.
Section 2.1), except that the complex values are replaced, as described
in Section 4.1, by points in R¥, the result is the following theorem.

Tueorem IV. Let F(t) be a real-valued continuous convex function,
defined in R*, for which F(t)/|t|] — + o as |t| > co. In order that there
exist a function f(x) (with values in R¥) belonging to the class Ly(X, I, u)
and possessing the property that
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p(4) = Sf(x) uw(@X)  for every Ae,
A

1t 18 necessary and sufficient that there is a finite constant ¢ so that the
inequality n
(**) Z F(p(4,)[u(4,)u(4,) ¢

holds for every finite system of disjoint sets Ay, Ay, ..., 4, from N.—The
Sfunction f is then essentially uniquely determined, and the smallest possible

value of ¢ is (x F(f(x))p(dX).

Remark 1 from Section 2.6 remains likewise valid: If sets of measure
0 are admitted in 9, then Theorem IV subsists only if we add to (**)
the extra condition that ¢(A4)=0 for every Ae for which u(A4)=0.

4.3. The proof of Theorem IV may be conducted exactly like that of
Theorem I. Aside from the obvious modifications, mentioned in 4.1 in
connection with the replacement of complex numbers by points of R¥,
the only new modifications are the following:

A. The inequality

2 %t
e=1
is replaced by the following analogous inequality which expresses the

convexity of F(¢): , ’
P(Za) s o,
e= e=

v r
g 21 AIAL
=

the assumptions being: ¢,20, 2,9,=1, and now: ¢,eR*. (Cf. Hardy-
Littlewood-Pélya [2, Theorem 98, p. 80], where the inequality is formu-
lated for the two-dimensional case k=2).

B. In the proof of the necessity of the condition (**) we apply (cf.
Section 2.2) the continuous analogue of the convexity property de-
scribed under A:

F (;»(A)-l Sf(xm(dX)) < w) | F(f@)udX)

4 4
in generalization of the inequality

V4
{r@uax)| s wap{ 1@ wax).
A

4
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C. If EeM, w(f)< oo, and fe Ly(E, M, u), then fe LYE, M, u). In
fact, since liminfy, , ,, F(t)/|¢| > O, there exist finite constants @ and b so
that |¢] £bF(t) whenever |{| >a. In other words, the inequality

|| < max[a, bF()]

holds for every tcR¥k. Inserting f(x) for ¢, we conclude that fe L'(E).

D. The proof of the countable additivity of the extension of ¢ from
A to F (cf. 2.3) depends again on the fact that ¢(d4,) > 0 whenever
wd,) =0, A,eF. This may now be proved by contradiction as follows.
Let 4,, 4,, ... be a sequence of sets from § for which u(4,) - 0, but
|p(4,)| >7 >0,  being fixed. Then u(4,)>0. Putting ¢, =¢(4,)/x(4,),
we infer that |t,| — oo, and hence F(t,)/|t,| — + o as n — co. Multiplying
by |@(4,)|, which exceeds 7, we conclude that

F(p(4,)/u(4,) n(4,) >+,

in contradiction with the inequality (**) for ¢ on .

E. In the case u(X)< oo, the extension of ¢ from U to the field § is
bounded (cf. Section 2.4). In fact, the inequality (**), applied to a
single set, states that F(@(4)/u(4)) p(A)<c when AcF and 4+0. Re-
placing ¢ in the inequality |t| < max [a, b F(t)] (see under C) by ¢(4)/u(4)
and multiplying by u(4), we get |@p(4)| £ max [au(X), bc].

It is not difficult to show that all the assumptions made about the
function F(¢) are indeed indispensable for the validity of Theorem IV.

4.4. To obtain a generalization of Theorem III, one may replace the
assumption that F(¢)/|¢| - + oo by the original weaker assumption that
F(t) > +oc as |t| > oo. Then it becomes necessary, like in Theorem IIT,
to add to (**) a further condition (to ensure that ¢(4)-> 0 whenever
u(A4) — 0), namely condition 1° of Theorem III. This modified version of
Theorem IV holds, like Theorem III, even if sets of measure 0 are ad-
mitted in U. Under the further assumptions that

LimsupF(t)/|t] < + and wu(X) < =,
[t}—> o
condition (**) becomes a consequence of the extra condition (cond. 1° of
Theorem III).—As no new features are involved in these remarks, we
may refrain from presenting the proofs.

4.5. Examples. A simple type of functions F(t), te R¥, are those which
(like the functions |¢|”) depend only on [¢|. Thus F(f)=®(|¢|), where
®(r) is a real-valued function defined for 0 <7 <oo. In order that F(t)
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be continuous and convex, it is necessary and sufficient that @(r) is
non-decreasing and convex (and hence continuous). In fact, these two
conditions, taken together, are sufficient to ensure that F(t) is convex,
since

F(Zat)=o(|Zau|) so(Zall) s Tao()) - T are)

when ¢,20, X g,=1, and ¢,e R*. And conversely, the two conditions are
necessary, as we may see by considering the values of F(f) on a line
through the origin given by the parametric representation ¢{=r-e, where
e is a fixed vector of length |e| =1, and the parameter » ranges over the
real axis —oo<7<o0. A convex, even function defined over the entire
real axis is obviously non-decreasing over the positive semi-axis.

Next, in order that F(t)=®(|¢|) satisfy the condition limy, _, . F(t)=
+ o0, it is necessary and sufficient that lim, . ®(r)= +oco. And simi-
larly, the condition limy, _, ., F(t)/[t| = 4+ oo, which enters in Theorem
IV, is tulfilled if, and only if, lim, , ,, D(r)/r= + .

As a specific example, apart from the functions |¢]|?, 1 <p <o, it may
be noted that Theorem IV holds with the function @(r)=r log*r, that is,

{ltl log|t] for|t] =1
0

B = [ log*lt] = foro < |t =1

The corresponding class Ly=2Z was considered by A. Zygmund in con-
nection with conjugate trigonometric series and the theory of strong
differentiation. Thus, under the assumptions of Theorem I (cf. Section
2.1), a necessary and sufficient condition that an additive set-function ¢
be the indefinite integral of some function f from the class Z, is that
there is a constant ¢ so that

p(4
2 lotatogr 120 < o

for all finite systems of disjoint sets 4,, ..., 4, from the domain % of ¢.
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