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A NOTE ON CONTRACTION SEMIGROUPS

G. E. H. REUTER

1. Let X be an abstract (L)-space, satisfying the conditions I-IX of
Kakutani [5]. A positive linear operator P on X is called a contraction
operator if

(1) 1Pz < ||| when 2 20.
Such an operator is necessarily bounded, with
(2) 1Pl =1.

If equality holds in (1) for each > 0, and hence in (2) also, P is called
a transition operator.
We shall be concerned with semigroups

X={P:tz20}
of contraction operators P, which are such that

Py =1, Py,=PP, (t20,820)),

\Pix—2z|| >0 as ¢t-> +0, foreach wxeX.

We call X' a contraction (transition) semigroup when P, for each ¢>0,
is a contraction (transition) operator. Finally, if X' ={P/} is another
(contraction or transition) semigroup, we say that X' dominates X if

P/z 2 P.x when 20 and ¢=0.

In applications of semigroup theory (e.g. to the study of Markov
processes) it is sometimes important to know whether a given semigroup
2 is dominated by any other semigroups 2. We shall show that the situa-
tion is very simple:

If J'is a transition semigroup, no distinct contraction semigroup ' !

dominates X';

if 2 is a contraction, but not transition, semigroup, then there exist

infinitely many distinct 2’ which dominate X, and amongst them are

infinitely many transition semigroups.
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In the second case, we shall construct only some of the 2’ which domi-
nate 2; the problem of constructing all of them remains open.

2. We first recall some relevant facts from semigroup theory (see
[3], [4]). The semigroup X has an infinitesimal generator 2 with dense
domain D(£2), and 17— has a bounded inverse J, (with domain X)
for each 1>0. Thus the equation

3) Ay—-Qy =2 (A > 0),

for given xe€ X, has the unique solution y=J,z. The resolvent operator
J, can be calculated from the representation

4) Jx = S e P dt;

0

conversely, P, can be calculated from J, by either of the inversion for-

mulae
Pz = lim (nt1J,,)"x,

n—> 00

Py = lim exp [tA(AJ,— )]z,

A—>o0

(8)

due to Hille [3] and Yosida [6] respectively. Finally, the fundamental
Hille-Yosida theorem (see [4], [6], [7]) states that an operator Q2 with
dense domain generates a contraction (transition) semigroup if and only
if, for each >0, 2 has a resolvent J, with domain X and such that
AJ, is a contraction (transition) operator.

It is seen at once by using the identity

le+yll = llzll+llygl (=20, yz0)

that if a contraction operator P’ dominates a transition operator P
(in the sense that P’z = Px when x20), then P’=P. Thus, trivially, if
a contraction semigroup 2’ dominates a transition semigroup 2, then
2'=2. If X is not a transition semigroup, our construction of dominant
semigroups 2’ will be motivated by a characterisation of operators 2’
which generate such a X' (Lemma 2 below).
For any xe X, write
z+ = sup (2, 0), 2= =sup(—x,0).
Then (see [5])
¢ =xt—z, |z = |at|+|lz-].

An elementary argument shows that
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(u, 2) = |zt —[lz—]

defines a positive linear functional » on X, and clearly (u, x)=|lz|| if and
only if x> 0. Hence a positive linear operator is a contraction (transition)
operator if and only if

(u, Px) < (%, %) (= (u, x))

for all x=0. We now give a variant of the Hille-Yosida theorem which
will be convenient for our purposes.

LevMa 1. A linear operator £2 with dense domain generates a contraction
(transition) semigroup if and only if

(i) (u, 2x)<0 (=0) whenever x=0 and xeD(Q);

(i) for each A>0 and xeX, the equation

Ay—Qy = x
has a unique solution y = J,x € D(Q), and J,x2 =20 when 2 0.

Proor. Since

(u, 2x) = lim (u, ¢~ (Pw—2)) = Lim ¢~1(||P,a]| — |l«])) ,
t—0 t—>0

condition (i) is clearly necessary; the necessity of (ii) is included in the
Hille-Yosida theorem. Conversely, if (i) and (ii) hold, then for any =0
and 4>0 we have

(u, M32) = (u, 2)+ (u, 2T;2) < (w, ) (=(u,2)),

because J,220 and J,x € D(2). Hence A/, is a contraction (transition)
operator, and the Hille-Yosida theorem shows that 2 generates a con-
traction (transition) semigroup.

Lemma 2. Let Q generate a coniraction semigroup X, and let Q' be an
operator with domain D(2')=D(2). Then Q' wrll generate a contraction
semigroup X' which dominates X if and only if

(i) QzzQx whenever £20 and x € D(Q);
(i) (u, Q'2) <0 whenever x=0 and x € D(Q);
(iii) For each A>0, Al — Q' has a positive inverse J,' with domain X.

Proor. The necessity of (i) and (iii) follows from Lemma 1, and that
of (i) follows at once from

Qx—0Qx = lim t-1(P/z— P,x) .

t—>0

Conversely, if (i)-(iii) hold, then (ii) and (iii) together with Lemma 1
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imply that Q' generates a contraction semigroup 2’ with resolvent
operator J,’. Also, if 220 and 4>0, then J,’x20 and J,’x € D(2), so
that (i) gives
QJ)x z QJ /%,
M-J,)x 2 M-2)],x =x.

Operating with J, on the left, we obtain

Jie =z Jx A>0,2z=0),
and now either of the inversion formulae (5) shows that

Pz 2 Px 20,120
so that 2 dominates 2.

3. We now suppose that X is a contraction but not transition semi-
group, and look for semigroups 2’ which dominate 2. We shall see that
there exist such 2’ with generators 2’ such that D(2’)=D(Q). Lemma
2 is a guide towards finding suitable operators 2’, and indeed it is easy
to write down an £’ which satisfies conditions (i) and (ii). To do this,

choose a fixed element ce X such that ¢ 20 and 0 <|lc||<1, and define 2’
with domain D(2')=D(2) by

(6) Qz = Qr — (u, Qx)c.

Since (u, £22) <0 when =0 and xeD(Q), (i) clearly holds, and so does

(ii) because
(u, X'z) = (u, Q) (1—cl]) .

It so happens that £’ also satisfies (iii), i.e. that the equation
(7) Ay—-Qy == A>0)

has a unique solution y=J,’z in D(£’), and that J,’z>0 when 220.
To prove this, write (7) as

M -2)y + (u, Qy)c = x.
Operating with J; (which is 1-1), this is equivalent to
y+ (u, Qy)Je = Jz,
so that any solution of (7) necessarily has the form
(8) ‘ y=Jx + e,

for some « (depending on z). Now y, as defined in (8), will satisfy (7)
if and only if
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x+ o + (u, 2, (x+ac))c =z,
« + (u, (A, —I)(x+ac) =0,
9) w1+ (u, A ye—c)] = (u, z—AT;2) .
The coefficient of « in (9) is
L—]lel[+ |4 el > 0

since 1 —|ic[| = 0 and ||AJ,c]| > 0; hence there is exactly one « such that (8)
defines a solution of (7). Also, since

(w, x—AJ,x) = |jz||—|AJ,2| =2 O when x = 0,

we shall have « =0 when £>20. We have now proved that (7) has a
unique solution, =0 when x>0, and thus Q' satisfies condition (iii)
of Lemma 2. This concludes the proof that 2’ generates a contraction
semigroup 2’ which dominates X

Since 2' was assumed to be not a transition semigroup, Lemma 1
shows that

(10) (u, Qz) < 0 for some z = 0in D(L2).

Now (u, 2'z) = (u, Qx)(1 —|ic||), so (10) implies that X’ is a transition
semigroup if and only if |jc/|=1. It also implies that £'+Q, and that
distinet choices of ¢ in (6) give rise to distinct £2'; hence 2’ + X and distinct
¢ give rise to distinct 2. We are therefore able to summarise our con-
clusions in the following

TeEOREM. Let X be a contraction semigroup, generated by 2. Then:

(a) If X is a transition semigroup, any contraction semigroup which
dominates X' coincides with X

(b) If X' is not a transition semigroup, the operator 2, defined by

Qx = Qx—(u, Qx)e, xeDQ) (withcz0and 0<|ic||£1)

generates a contraction semigroup X, dominating X. Also X+ 2, X, + 2,
if ¢y %y, and 2, 1s a transition semigroup if and only if |jc||=1.

2

We remark that unless X is 1-dimensional, it will contain infinitely
many distinct positive elements of norm 1, so that there will be infinitely
many transition semigroups amongst the 2.

4. The reader who is familiar with the theory of Markov processes
may find it interesting to observe that the above construction of X,
from 2'is an analytical generalisation of a well known probabilistic con-
struction due to Doob [1]. His construction converts a Markov process
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with a countable set of states, with transition probabilities p;;(f) such
that 2;p;(t)<1, into a new process with transition probabilities
Pi;*(8) 2 p;;(t) such that 2;p,*(t)=1. An analytical version of Doob’s
construction was found some time ago by David G. Kendall (unpub-
lished); he also calculated the Laplace transform of p;;*(¢) from that of
Py;(t), his result being equivalent to our solution of (7) in the special
case when X = (), the space of absolutely convergent series. Recently
W. Feller has also introduced an analytical version of Doob’s construc-
tion for diffusion processes (cf. the “instantaneous return process’” in
[2]). Here X is the space of finite signed measures on the real line, but
a direct comparison with our result is difficult because Feller considers
a class of semigroups distinct from ours.

5. I am indebted to David G. Kendall for showing me his unpublished
work on Markov processes, for suggesting the present more general
investigation, and for some helpful comments during its progress.

REFERENCES

1. J. L. Doob, Markoff chains —~ denumerable case, Trans. Am. Math. Soc. 58 (1945), 455-
473.
2. W. Feller, Diffusion processes in one dimension, Trans. Am. Math. Soc. 77 (1954), 1-31.
3. E. Hille, Functional analysis and semi-groups (Am. Math. Soc. Coll. Publ. 31), New
York, 1948. '
4. E. Hille, On the generation of semi-groups and the theory of conjugate functions, Kungl.
Fysiografiska Sallskapets i Lund Férhandlingar (= Proc. Roy. Physiog. Soc. Lund)
21 (1952), No. 14.

5. S. Kakutani, Concrete representations of abstract (L)-spaces and the mean ergodic theorem,
Ann. of Math. (2) 42 (1941), 523-537.

6. K. Yosida, On the differentiability and the representation of one-parameter semigroups
of linear operators, J. Math. Soc. Japan 1 (1948), 15-21.

7. K. Yosida, An operator-theoretical treatment of temporally homogeneous Markoff pro-
cess, J. Math. Soc. Japan 1 (1949), 244-253.

THE UNIVERSITY, MANCHESTER, ENGLAND



