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ON NON-CONSTRUCTIVE THEOREMS OF ANALYSIS
AND THE DECISION PROBLEM

R. L. GOODSTEIN

In this note we exhibit a method for strengthening some known results
on the impossibility of proving certain classical theorems in recursive
analysis. For the concepts and nomenclature of recursive analysis the
reader is referred to [3].

We denote by % some (unspecified) formalisation of recursive arith-
metic, and by #* an extension of £ to rational numbers and functions,
adequate for recursive analysis.

1. If f(n, x) is any rational recursive function, recursively convergent
in n, and differentiable in x, relative to m, with relative derivative
fi(n, z) for 0sx <1, and if

f(n,O):f(n,l):O

then we say that f(n, x) satisfies the conditions of the relative Rolle’s
theorem and write fe RT'.

It was proved in [1] that if fe RT then there is a recursive », and a
recursive ¢;, such that n=v, - fi(n, c;) =0(k) is provable in #*,

If there exists a recursive sequence c;, a recursive », and an integer
p such that 1/p<c, <1—1/p and

(@) nzv > fi(n, ) =0(k)

is provable in #* (with free variable n) then we say that f(n, x) satisfies
the conditions of the uniform Rolle’s theorem and write fe URT'; if how-
ever condition (i) is provable, not necessarily for a variable », but for
each positive integral value of n, then we write feIRT.

We gave in [2] an example of a function f such that fe RT but f¢ URT.
‘We shall now prove the stronger result that there exists an f such that
feRT but f¢IRT. We shall in fact show that a proof in #£* of

feRT - feIRT
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provides a decision method for the class of equations g¢(n)=0, where p
is a recursive function which takes only the values 0 and 1, but, as is
well known (see [4, pp. 417—418]), this class of equations is undecidable.

2. Given any recursive function g(n) which takes only the values 0
and 1 we define (as in [2])

n
e = 0, bnt1 = € T ﬂ(lég(r))
r=0
dy = 1, Api1 = 1eg1q
and, for 05z <1 and =3,
f(n, 2)

It is supposed that g(0)=0.
The following properties of these functions are readily provable in 2*
(for details, see [2, pp. 228-230]).

_ dyta(l=a)
Cd2+(1-2d,)x

(2.1) e, =n.
(2.2) e,<n—> (Br)(rsn &o(r)=1).
(23) IIN>n21then 0=d,—dy<1/n.
(2.4) For n=3 and 0=z =<1, we have
0sf(n, 2)Sd,0.
(2.8) If3=n<N and 0=sz=1 then
0=f(n, z)—f(N, )< 1/nt,

from which it follows that f(n, ) converges uniformly in z for 0<z <1.
(2.6) For 0<z<1, f(n, z) is differentiable in 2 uniformly in = and =,
so that f(n, ) is differentiable in x relative to n, and the relative deriv-
ative f1(n, x) converges uniformly in z, and fe RT.
(2.7) If there is a recursive V (k) such that

n2 V(k) ~ dy= O(k)
is provable in #* for all integers n, then g(n)=0 is provable in Z for all
integers n.

3. If feIRT then (by definition) there exists a recursive V(k), a re-
cursive ¢; and an integer p such that ¢, =1/p and

n=V(k) - fin, Cp) = 0(k)

is provable in #* for all integers n.
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Since
dn4 (dn - ck) {dn + (l - 2dn) ck}

{dn2 + (1 - 2dn) Clc}2

fl(n: ck) =

and .
d,+(1-2d,)c;, > d,2+(1—-2d,)c,,
d.2+(1—2d,)c, = (1-d,)2 < 1,

it follows that .
n2 V(k) > dyd(d,—cp) = (k)

is provable in Z* for all n.
By (2.1), either d,,.,=1/(p+1) or d,,,; >1/(p+1).
Ifd,, ,=1/(p+1) thend,<1/(p+1) for n = (p+1) so that

|dp—cil > 1f[p(p+1)],
nz V(4k+p) — dy=0(k)

and therefore

is provable in Z* for all n, whence, by (2.7), ¢(n)=0 is provable in Z for
all integers n.

If however d,,, >1/(p+1) then by (2.2) there is an r between 0 and
p+1 for which g(»)=1 is provable in #, and so the hypothesis fe IRT
implies the existence of a decision procedure for the undecidable class
of equations g(n)=0.
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