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ON POLYNOMIAL SOLUTIONS
OF A DIFFERENTIAL EQUATION

ARNE MAGNTUS

1. The problem of finding all area-preserving, analytic functions f(z)
leads to the equation |f’(z)|=1. The solutions are trivial, namely,
f(2)=az+b where a and b are constants and |a| =1. In the corresponding
problem in two variables z; and 2z, we seek volume-preserving pairs of
analytic functions u=u(z, z,) and v=1v(2, 2,), that is, solutions of the
partial differential equation

(1) Uy, Uy — Up, U, = 1.
This differential equation has solutions [1] other than the trivial ones

be
ef

We note that, if (u, v) satisfies (1), so do (u+F(v), v) and (u, v+ F(u))
where F is arbitrary. This may be utilized to construct chains of solutions
starting with the identity mapping u;=z,, v;=2,. As an example let
xf£0, and set

u = a+bz;+cz,,

=1.
v=d+ez;+f2,,

Uy = Uy + Patoy, v, =0,

Ug = Uy, vy = vy — flsinau, ,

U, = Uy — folog, v, =0y,
which gives
Uy = 2, + o1 sin (ozy + f2,)
4 1 1 2/ >

vy = 2y — B sin(az; +fz,) .

The author believes that all polynomial solutions of (1) may be obtained
from the identity mapping by means of such chains where the F’s in-
volved are polynomials. If m and n denote the degrees of 4 and v, respec-
tively, then the above conjecture is equivalent to showing that m|n or
n|m [1, p. 263]. In this paper we settle the question in part by showing
that (1) has no polynonial solutions with (m,n)=1 and m=2, n=2.
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2. THEOREM. Let u=1u(2y, 2,) and v=1v(z,, 2,) denote two polynomials of
degrees m= 2 and n 2 2, respectively, in the two complex variables z; and z,.
If the Jacobian
Uy Uy, — Uy, ¥, = k = constant
and m and n are relatively prime, then k=0 and there exists a polynomial
h of first degree in z, and z, such that u and v are polynomials in h.

Without loss of generality we may normalize any pair (%, v) of poly-
nomial solutions of u, v,, —u,,v, =k so that u(0, 0)=v(0, 0)=0 and m = n.
We assume throughout the paper that this has been done.

ReEMARK I. The equation

Uy Cy — UV, = 0

has polynomial solutions of any degrees m and = as is seen by the example
u={(2;+2,)™ and v={(2, +2,)".
Grouping terms of the same degrees, we may write

m n
U = Zfi (21,2,) and v = 21’ Pi (21, 29)
=1 =

where the f’s and ¢,’s are homogeneous polynomials of ith degree in
z; and z,, and f,,==0=¢p,. For m=n>1, we then have [1]

!
@) fm_” 20 2 (('m' 77 /'”’) 7}_} ‘ P, (m—pn — vlzl'(p“ ,
Y, o=

a=1
p=01 ..., m+n-3
where the C,’s are suitable constants, the sum without limits is to be
extended over all combinations of non-negative integers », satisfying

n—1

(3) él‘(nﬂx)va =u-y,

and » is defined by y=v,+ 73+ ... +7,_;. For u=m the left-hand side of
(2) shall be set equal to zero, and, if ¢, =0 for some «, then we set ¢, ">=1
when »,=0.

Remark II. If 1=n<m, we may insert u=f,+fo+...+f, and
v=y2,+02, in w, v,,—u, v, =k and compare homogeneous polynomials
of equal degrees on both sides of the equation. This gives

xfB|
ya| ="

u = a2z + fz, + 2 Oy (¥2, +025)",

where the sum is missing if m=1.
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Proceeding to the proof of the theorem, we have by (2)

f m = Co@p™™

and, since m/n is in lowest terms, we easily see that there exists a homo-
geneous polynomial k of first degree such that

4) @, = h?, Im = Coh™ and Co+0.
Next we shall show that
(5) v, =k h* a=12 ...,n—-1,

where the k_’s are constants. Once (5) is established, formula (2) shows

that
S =LA, u=12...,m,

where the /s are constants. Thus % and » are polynomials in 4 and there-
fore w, v,,—u, v, =0.

Equation (5) is proved by contradiction. To this end we factor out
the greatest possible power A?~ of ¢, and write

(6) <Pa=7]ahp“, x=12...,n—1,

where 0 < p, £ «, the ,’s are homogeneous polynomials of degree o« —-p,
and k1 7, if ,2=0. We assume that p, <« for some value of «. Clearly
the corresponding 7,’s are not identically zero. We insert (4) and (6) in
(2) and find a lower bound for the exponent e of % in the resulting equa-
tion,

n—~1 n—1

e=m_7_—nv—*—zpava:m——y—Z(n_pa)va
a=1

a=1

’n—ln_ x
=m—y — n—u)y
v-—2 o e
n— n—1
2m -y — ( max p“) S (n—a)y,.
1sasn-1 M — &/ =1
By (6) we see that
n_ —
Pa _ 1427 P > 1
n—o n—oc
and by our assumption
n—Pp,
>1
n—«

for at least one value of x. We may write
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n—p, P _ep
max =—-=-——>1,

1Sagn-1 N—& q eq

where p and ¢ are relatively prime,

(7) (pg)=1.

‘We introduce the notation

(8) &, = n—0q, o=12,...,[n/p],

and see that

(9) n—p,, S ep, eo=12,...,[n/p],

and

(10) ﬁ_—.—123’<?3,o¢=i=oc@, o=12,...,[n/p].
n—o g

Let r denote the largest value of ¢ for which there is equality in (9) and
write

(6 Fop = ZFP 0 =12 ..., [nfp],
and observe that
(11) kbt z.=n,  (by assumption).

By (3) and the above notation

n—1

ezm—y—%’Z(n—am

P
m—y — E(ﬂ—}’)

a=1

p p p
m—p-+y(——l)zm— =~

q q # q
This lower bound, m — pup/q, for e is attained if and only if

0 (modg) (in view of (7)),

il

(12) I
(13) y =0 (since p/g—1 > 0),

(14) v,=0 for a+ux, o=1,2...,7, (by (10)),
and .
(15) vy, =0  when n—p,, < 0Pp.

e
It will be shown later that we may choose u =0 (modg) so that m — up/g <0
and g <m+n—3. The right-hand side of (2) will then contain fractions
whose denominators are powers of %, the largest such power being
h#Pla=™_ T we multiply both sides of (2) by 2*P4~™~1 we obtain

a polynomial = a polynomial + C,N,/h .
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Thus 4 divides N,. By (14) and (15) the polynomials 7, that appear in
N, are exactly those which have the subscripts «, defined in (8) and for
which n—p, =e¢p. For the sake of convenience, we enlarge the sum
N, by removing the restriction (15). The resulting sum is denoted by
P, By (2), (14) and (6')

mfn !
(16) p,=3(" / )—-11xg =0 (modg),
Il»
e oo
where the sum—by (3) and (8)—is to be extended over all combinations
of non-negative integers v, satisfying

r

, LK
(3) ZQ”ug—E~

e=1

Each term in P, which does not also belong to N, contains at least one
factor y, for which n— Do, < QP By (6) and (6') these factors are divisible
by k. Thus % divides P, when

(17) mqfp <psmi+n—3.

Setting r=2, ¢=1, y,= —2z, y,=1 and replacing m/n by —1/2 in (16),
it may be shown that the P s reduce to the Legendre polynomials.
Like the Legendre polynomials, the polynomials P, have a generating
function from which we may deduce a recurrence formula. To show this
let

r
T=1+ 2 y,t™
e=1

and expand 7™7" binomially

oo = 3" 2 ]

=0
Then we expand the brackets multinomially and obtain

- (7|

»=0

r (o)
(21 z=) | = 3 pp

=1 =0
H”zxe' ¢ ZEO(modq)

where

and the P ’s are given by (16) and (3’) but not restricted by (17). Com-
paring coefficients on both sides of the identity

17*
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ormm _m or  maT
— Tm/ B o pu—1
& n G R =T 2 b

and setting y,=1, we obtain the recurrence formula

r

u m
(a8) 2[3'9(2”)}"@1’”—@50, p=92,.. .,

=0
where
P,=0, p=~—1,-2..., —r.

Since m/n is in lowest terms, r <= and ufq is an integer, we see that
(19) ulg — rimn+1) £ 0.

Next we show that the interval (17) contains at least r consecutive
multiples u of ¢, that is, m+n—3—mgfp>(r—1)g+(¢—1). Using the
facts that r<n/p, m=n+1 and n=p=q+1, we see that

n
m+n—-3-—mg—-—rq+1 = m—2 +n— 2——q
g p p

v

1
2—0[(n+1)(p—q)+p(n—2)—nq]

1
=—[2n(p g-1)+2n—p—q]l =

'81:-‘

We now choose p=0 (modg) so that
mg[p < p—(r—1)g S p < m+n-3

and see by (18), (19) and (11) that k[P, .. Repeating this argument,
decreasing x4 by g units at a time, we finally obtain A|P;=1, a contra-
diction. Thus the assumption that p,<« for some « is wrong, which
proves (5) and completes the proof of the theorem.
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