ON POLYNOMIAL SOLUTIONS OF A DIFFERENTIAL EQUATION

ARNE MAGNUS

1. The problem of finding all area-preserving, analytic functions f(z) leads to the equation $|f'(z)| \equiv 1$. The solutions are trivial, namely, f(z) = az + b where a and b are constants and |a| = 1. In the corresponding problem in two variables z_1 and z_2 we seek volume-preserving pairs of analytic functions $u = u(z_1, z_2)$ and $v = v(z_1, z_2)$, that is, solutions of the partial differential equation

$$u_{z_1}v_{z_2}-u_{z_2}v_{z_1}=1.$$

This differential equation has solutions [1] other than the trivial ones

$$\begin{vmatrix} u = a + bz_1 + cz_2, \\ v = d + ez_1 + fz_2, \end{vmatrix} \begin{vmatrix} b & c \\ e & f \end{vmatrix} = 1.$$

We note that, if (u, v) satisfies (1), so do (u + F(v), v) and (u, v + F(u)) where F is arbitrary. This may be utilized to construct chains of solutions starting with the identity mapping $u_1 = z_1$, $v_1 = z_2$. As an example let $\alpha \beta \neq 0$, and set

$$\begin{array}{lll} u_2 = u_1 \, + \, \beta \, \alpha^{-1} \, v_1, & v_2 = v_1 \; , \\ \\ u_3 = u_2, & v_3 = v_2 \, - \, \beta^{-1} \sin \alpha u_2 \; , \\ \\ u_4 = u_3 \, - \, \beta \, \alpha^{-1} \, v_3, & v_4 = v_3 \; , \end{array}$$

which gives

$$\begin{split} u_4 &= z_1 \, + \, \alpha^{-1} \sin \left(\alpha z_1 + \beta z_2 \right) \, , \\ v_4 &= z_2 \, - \, \beta^{-1} \, \sin \left(\alpha z_1 + \beta z_2 \right) \, . \end{split}$$

The author believes that all polynomial solutions of (1) may be obtained from the identity mapping by means of such chains where the F's involved are polynomials. If m and n denote the degrees of u and v, respectively, then the above conjecture is equivalent to showing that m|n or n|m [1, p. 263]. In this paper we settle the question in part by showing that (1) has no polynomial solutions with (m, n) = 1 and $m \ge 2$, $n \ge 2$.

Received September 26, 1955.

2. THEOREM. Let $u = u(z_1, z_2)$ and $v = v(z_1, z_2)$ denote two polynomials of degrees $m \ge 2$ and $n \ge 2$, respectively, in the two complex variables z_1 and z_2 . If the Jacobian

 $u_{z_1}v_{z_2} - u_{z_2}v_{z_1} = k = \text{constant}$

and m and n are relatively prime, then k=0 and there exists a polynomial h of first degree in z_1 and z_2 such that u and v are polynomials in h.

Without loss of generality we may normalize any pair (u, v) of polynomial solutions of $u_{z_1}v_{z_2}-u_{z_2}v_{z_1}=k$ so that u(0, 0)=v(0, 0)=0 and $m \ge n$. We assume throughout the paper that this has been done.

Remark I. The equation

$$u_{z_1}v_{z_2}-u_{z_2}v_{z_1}=0$$

has polynomial solutions of any degrees m and n as is seen by the example $u = (z_1 + z_2)^m$ and $v = (z_1 + z_2)^n$.

Grouping terms of the same degrees, we may write

$$u = \sum_{i=1}^{m} f_i(z_1, z_2)$$
 and $v = \sum_{i=1}^{n} \varphi_i(z_1, z_2)$,

where the f_i 's and φ_i 's are homogeneous polynomials of *i*th degree in z_1 and z_2 , and $f_m \equiv 0 \equiv \varphi_n$. For $m \geq n > 1$, we then have [1]

(2)
$$f_{m-\mu} = \sum_{\gamma=0}^{\mu} C_{\gamma} \sum_{\gamma=0}^{\infty} \binom{(m-\gamma)/n}{\gamma} \frac{\nu!}{\prod_{\alpha=1}^{n-1} \varphi_{\alpha}!} \varphi_{n}^{(m-\gamma)/n-\nu} \prod_{\alpha=1}^{n-1} \varphi_{\alpha}^{\nu_{\alpha}},$$

$$\mu = 0, 1, \dots, m+n-3$$

where the C_{γ} 's are suitable constants, the sum without limits is to be extended over all combinations of non-negative integers ν_{α} satisfying

(3)
$$\sum_{\alpha=1}^{n-1} (n-\alpha) \nu_{\alpha} = \mu - \gamma ,$$

and ν is defined by $\nu = \nu_1 + \nu_2 + \dots + \nu_{n-1}$. For $\mu \ge m$ the left-hand side of (2) shall be set equal to zero, and, if $\varphi_{\alpha} \equiv 0$ for some α , then we set $\varphi_{\alpha}^{\ \nu_{\alpha}} = 1$ when $\nu_{\alpha} = 0$.

REMARK II. If $1 = n \le m$, we may insert $u = f_1 + f_2 + \ldots + f_m$ and $v = \gamma z_1 + \delta z_2$ in $u_{z_1} v_{z_2} - u_{z_2} v_{z_1} = k$ and compare homogeneous polynomials of equal degrees on both sides of the equation. This gives

$$u = \alpha z_1 + \beta z_2 + \sum_{\mu=2}^{m} C_{m-\mu} (\gamma z_1 + \delta z_2)^{\mu}, \qquad \begin{vmatrix} \alpha \beta \\ \gamma \delta \end{vmatrix} = k,$$

where the sum is missing if m=1.

Proceeding to the proof of the theorem, we have by (2)

$$f_m = C_0 \varphi_n^{m/n}$$

and, since m/n is in lowest terms, we easily see that there exists a homogeneous polynomial h of first degree such that

(4)
$$\varphi_n = h^n, \quad f_m = C_0 h^m \quad \text{and} \quad C_0 \neq 0.$$

Next we shall show that

(5)
$$\varphi_{\alpha} = k_{\alpha}h^{\alpha}, \qquad \alpha = 1, 2, \ldots, n-1,$$

where the k_{α} 's are constants. Once (5) is established, formula (2) shows that

$$f_{\mu} = l_{\mu}h^{\mu}, \qquad \mu = 1, 2, \ldots, m,$$

where the l_{μ} 's are constants. Thus u and v are polynomials in h and therefore $u_{z_1}v_{z_2}-u_{z_2}v_{z_1}=0$.

Equation (5) is proved by contradiction. To this end we factor out the greatest possible power $h^{p_{\alpha}}$ of φ_{α} and write

(6)
$$\varphi_{\alpha} = \eta_{\alpha} h^{p_{\alpha}}, \qquad \alpha = 1, 2, \ldots, n-1,$$

where $0 \le p_{\alpha} \le \alpha$, the η_{α} 's are homogeneous polynomials of degree $\alpha - p_{\alpha}$ and $h \nmid \eta_{\alpha}$ if $\eta_{\alpha} \equiv 0$. We assume that $p_{\alpha} < \alpha$ for some value of α . Clearly the corresponding η_{α} 's are not identically zero. We insert (4) and (6) in (2) and find a lower bound for the exponent e of h in the resulting equation,

$$e = m - \gamma - nv + \sum_{\alpha=1}^{n-1} p_{\alpha} v_{\alpha} = m - \gamma - \sum_{\alpha=1}^{n-1} (n - p_{\alpha}) v_{\alpha}$$

$$= m - \gamma - \sum_{\alpha=1}^{n-1} \frac{n - p_{\alpha}}{n - \alpha} (n - \alpha) v_{\alpha}$$

$$\geq m - \gamma - \left(\max_{1 \leq \alpha \leq n-1} \frac{n - p_{\alpha}}{n - \alpha} \right) \sum_{\alpha=1}^{n-1} (n - \alpha) v_{\alpha}.$$

By (6) we see that

$$\frac{n-p_{\alpha}}{n-\alpha} = 1 + \frac{\alpha - p_{\alpha}}{n-\alpha} \ge 1$$

and by our assumption

$$\frac{n-p_{\alpha}}{n-\alpha} > 1$$

for at least one value of α . We may write

Math. Scand. 3.

$$\max_{1 \le \alpha \le n-1} \frac{n-p_{\alpha}}{n-\alpha} = \frac{p}{q} = \frac{\varrho p}{\varrho q} > 1,$$

where p and q are relatively prime,

$$(p,q)=1.$$

We introduce the notation

(8)
$$\alpha_{\varrho} = n - \varrho q, \qquad \varrho = 1, 2, \ldots, [n/p],$$

and see that

(9)
$$n-p_{\alpha_{\varrho}} \leq \varrho p, \qquad \varrho = 1, 2, \ldots, [n/p],$$

and

(10)
$$\frac{n-p_{\alpha}}{n-\alpha} < \frac{p}{q}, \quad \alpha \neq \alpha_{\varrho}, \quad \varrho = 1, 2, \ldots, [n/p].$$

Let r denote the largest value of ϱ for which there is equality in (9) and write

(6')
$$\varphi_{\alpha_{\varrho}} = \chi_{\varrho} h^{n-\varrho p}, \qquad \varrho = 1, 2, \ldots, [n/p],$$

and observe that

(11)
$$h \nmid \chi_r = \eta_{\alpha_r}$$
 (by assumption).

By (3) and the above notation

$$e \ge m - \gamma - \frac{p}{q} \sum_{\alpha=1}^{n-1} (n-\alpha) \nu_{\alpha} = m - \gamma - \frac{p}{q} (\mu - \gamma)$$
$$= m - \mu \frac{p}{q} + \gamma \left(\frac{p}{q} - 1\right) \ge m - \mu \frac{p}{q}.$$

This lower bound, $m - \mu p/q$, for e is attained if and only if

(12)
$$\mu \equiv 0 \pmod{q} \quad \text{(in view of (7))},$$

(13)
$$\gamma = 0 \qquad \text{(since } p/q - 1 > 0),$$

(14)
$$v_{\alpha} = 0$$
 for $\alpha \neq \alpha_{\varrho}$, $\varrho = 1, 2, ..., r$, (by (10)),

and

(15)
$$v_{\alpha_{\varrho}} = 0 \quad \text{when} \quad n - p_{\alpha_{\varrho}} < \varrho p.$$

It will be shown later that we may choose $\mu \equiv 0 \pmod{q}$ so that $m - \mu p/q < 0$ and $\mu \leq m + n - 3$. The right-hand side of (2) will then contain fractions whose denominators are powers of h, the largest such power being $h^{\mu p/q-m}$. If we multiply both sides of (2) by $h^{\mu p/q-m-1}$, we obtain

a polynomial = a polynomial +
$$C_0N_u/h$$
.

Thus h divides N_{μ} . By (14) and (15) the polynomials η_{α} that appear in N_{μ} are exactly those which have the subscripts α_{ϱ} defined in (8) and for which $n - p_{\alpha_{\varrho}} = \varrho p$. For the sake of convenience, we enlarge the sum N_{μ} by removing the restriction (15). The resulting sum is denoted by P_{μ} . By (2), (14) and (6')

(16)
$$P_{\mu} = \sum {m/n \choose \nu} \frac{\nu!}{\prod_{\varrho=1}^{r} \nu_{\alpha_{\varrho}}!} \prod_{\varrho=1}^{r} \chi_{\varrho}^{\nu_{\alpha_{\varrho}}}, \quad \mu \equiv 0 \pmod{q},$$

where the sum—by (3) and (8)—is to be extended over all combinations of non-negative integers ν_{α_0} satisfying

$$\sum_{\varrho=1}^r \varrho \, \nu_{\alpha_\varrho} = \frac{\mu}{q}.$$

Each term in P_{μ} which does not also belong to N_{μ} contains at least one factor χ_{ϱ} for which $n - p_{\alpha_{\varrho}} < \varrho p$. By (6) and (6') these factors are divisible by h. Thus h divides P_{μ} when

(17)
$$m q/p < \mu \leq m+n-3$$
.

Setting r=2, q=1, $\chi_1=-2x$, $\chi_2=1$ and replacing m/n by -1/2 in (16), it may be shown that the P_{μ} 's reduce to the Legendre polynomials. Like the Legendre polynomials, the polynomials P_{μ} have a generating function from which we may deduce a recurrence formula. To show this let

$$T = 1 + \sum_{\varrho=1}^{r} \chi_{\varrho} t^{\varrho q}$$

and expand $T^{m/n}$ binomially

$$T^{m/n} = \sum_{v=0}^{\infty} {m/n \choose v} \left[\sum_{\varrho=1}^{r} \chi_{\varrho} t^{\varrho q} \right]^{v}.$$

Then we expand the brackets multinomially and obtain

$$T^{m/n} = \sum_{v=0}^{\infty} {m/n \choose v} \left[\sum_{arrho=1}^{rac{v\,!}{\prod_{arrho=1}^{r}
u_{lpha_{arrho}}!} \left(\prod_{arrho=1}^{r}
\chi_{arrho}^{\ \
u_{lpha_{arrho}}}
ight) t^{\mu}
ight] = \sum_{\mu=0 top (\mathrm{mod}\, q)}^{\infty} P_{\mu} t^{\mu}$$

where

$$\mu = q \sum_{\varrho=1}^{r} \varrho \nu_{\alpha_{\varrho}}$$

and the P_{μ} 's are given by (16) and (3') but not restricted by (17). Comparing coefficients on both sides of the identity

$$T\,\frac{\partial T^{m/n}}{\partial t} = \frac{m}{n}\,T^{m/n}\,\frac{\partial T}{\partial t} = \frac{m}{n}\,\frac{\partial T}{\partial t}\,\sum\,P_\mu t^\mu \equiv\,T\,\sum\,\mu\,P_\mu\,t^{\mu-1}$$

and setting $\chi_0 = 1$, we obtain the recurrence formula

(18)
$$\sum_{\varrho=0}^{r} \left[\frac{\mu}{q} - \varrho \left(\frac{m}{n} + 1 \right) \right] \chi_{\varrho} P_{\mu-\varrho q} \equiv 0, \quad \mu = q, 2q, \ldots,$$

where

$$P_{\varrho q} \equiv 0, \qquad \varrho = -1, -2, \ldots, -r.$$

Since m/n is in lowest terms, r < n and μ/q is an integer, we see that

(19)
$$\mu/q - r(m/n+1) \neq 0.$$

Next we show that the interval (17) contains at least r consecutive multiples μ of q, that is, m+n-3-mq/p>(r-1)q+(q-1). Using the facts that $r \le n/p$, $m \ge n+1$ and $n \ge p \ge q+1$, we see that

$$\begin{split} m+n-3-m\frac{q}{p}-rq+1 & \geq m\frac{p-q}{p}+n-2-\frac{n}{p}q \\ & \geq \frac{1}{p}\left[(n+1)(p-q)+p(n-2)-nq\right] \\ & = \frac{1}{p}\left[2n(p-q-1)+2n-p-q\right] \geq \frac{1}{p} > 0 \; . \end{split}$$

We now choose $\mu \equiv 0 \pmod{q}$ so that

$$mq/p < \mu - (r-1)q \leq \mu \leq m+n-3$$

and see by (18), (19) and (11) that $h|P_{\mu\to q}$. Repeating this argument, decreasing μ by q units at a time, we finally obtain $h|P_0\equiv 1$, a contradiction. Thus the assumption that $p_{\alpha}<\alpha$ for some α is wrong, which proves (5) and completes the proof of the theorem.

REFERENCE

 Arne Magnus, Volume-preserving transformations in several complex variables, Proc. Amer. Math. Soc. 5 (1954), 256-266.

UNIVERSITY OF NEBRASKA, LINCOLN, NEBRASKA, U.S.A.