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TORI WITH ONE-PARAMETER GROUPS OF MOTIONS

HERBERT BUSEMANN and FLEMMING P. PEDERSEN

1. Introduction. A general theory of geodesics was developed by one
of the authors in[2]. The spaces considered there are G-spaces, a generali-
zation of Finsler spaces, which in turn comprise the Riemann spaces. A
G-space is a metric space satisfying additional postulates which essen-
tially amount to requiring 1) that the space be finitely compact (i.e.,
complete as this term is used in the foundations of differential geometry)
and 2) that the space have locally unique geodesics, where a geodesic is
defined as a locally isometric image of an entire euclidean straight line.
The geodesics which are isometric in the large to euclidean straight lines
are particularly important and are called straight lines. If each geodesic
of a G-space is a straight line, then the space is called straight. '

The G-spaces whose universal covering spaces are straight are, in the
language of the calculus of variations, the spaces without conjugate
points. In [2] the general theory of geodesics is applied principally to
these spaces and other spaces with a simple behavior of the conjugate
points. It is the purpose of the present paper to show that the methods
of [2] can also be very effective in establishing the distribution of con-
jugate points in given cases. We concentrate here mainly on tori with
one-parameter groups of motions (a motion of a metric space is a distance
preserving mapping of the space on itself). Special tori of this type have
been treated in the literature with the standard methods of the calculus
of variations, so that the two approaches can be compared.

We prove: Let R be a torus, metrized as a G-space, which possesses a
one-parameter group of motions I',. If no orbit of I, is a closed geo-
desic, then the metric is Minkowskian, i.e., the metric of R allows a
transitive abelian group of motions.

If, on the other hand, I'y possesses orbits which are closed geodesics,
then the identity component of the group of motions I" corresponding
to I'p in the universal covering plane P of R possesses orbits which are
straight lines. Every geodesic through a point p of such a straight
orbit is a straight line. When a point p of P does not lie on a straight
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orbit it lies in a narrowest strip bounded by two such orbits 4, B. Then
there are two straight lines L and M through p which approach 4 and
B asymptotically. The lines L and M bound the closed angular domain
D’ containing A and B and the remaining open domain D"”. A geodesic
K through p and a point of D’ is a straight line. Any half geodesic H
issuing from p and through a point of D'’ lies (except for the point p)
in D" and contains no ray, i.e., no isometric image of a euclidean half
line. These terms mean in the language of the calculus of variations
that no point of K has a conjugate point on X, and that every point ¢
of H is followed by a conjugate point to g on H. As a simple illustration
of this theorem, consider the case where R is a torus in &® obtained by
revolving about the Z-axis an arbitrary closed curve C lying in the XZ-
plane and not intersecting the Z-axis. Then the group I, is the group
of rotations with axis Z, and the straight lines which are orbits of I" corres-
pond to those points of C which have minimal distance from the Z-axis.

The special case of this theorem to which we alluded above is found
in Kimball [4]. There R is a torus in E® obtained by rotating an ana-
lytic, closed, convex curve C about an axis Z (in the plane of C, but not
intersecting C), with the additional requirement that B be symmetric
with respect to some plane perpendicular to Z. The restrictive assump-
tions are introduced to make the equations for the conjugate points
manageable, whereas our result not only applies to tori obtained by
revolving curves of arbitrary shape, but also to tori with non-Riemann-
ian metrics. For the ordinary torus, where C is a circle, our theorem is
already found in Bliss [1], who determines the geodesics explicitly in
terms of elliptic functions and gives the equations for the conjugate
points. Our purely qualitative results do, of course, not compete with
those of Bliss.

Hedlund [3], guided by the methods of Morse [5], studies the existence
and behavior of straight lines on arbitrary Riemannian tori. These
methods are also purely geometric and somewhat related to ours. In
fact, in the preliminary discussion of Section 2, where we deal with more
general situations, we generalize some of Morse’s and Hedlund’s results
and simplify their proofs; we refer the reader, in particular, to Theorem
(2.6) which we believe to be interesting in itself. Throughout the paper
we shall freely use the results and terminology of [2].

2. Motions of G'-planes. We begin with some facts which can be
applied to a much wider class of surfaces than tori and are therefore
important for other investigations.

In a G-space R, let G be a straight line and @ a motion of R. If &,
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reduced to G, is a proper translation of G, then @ is called an axial
motion of B and ¢ an azis of ®.

(2.1) If G is an axis of D then for any point x of G

zxx® = inf yyd .
yeR

In fact, for any positive integer n

n—1

zxd" = n-zx® £ xy + Y y@yd+l + ydradr
r=0

= 2zy + n-yyd,

so that
zax® £ (2/n) 2y + yyd .

If @ is an axis of @ then @G is also an axis of @, where » is some integer
(#+0), so that we have the immediate corollary:

(2.2) Under the assumptions of (2.1)

zx® = inf yyd .
YyeER

(2.3) Two axes of the same axial motion are parallel.

This means: If G* and H* are two oriented axes of @ then a co-ray
from a point g of H* to a positive sub-ray S of G* is a positive sub-ray
of H*, and similarly for the opposite orientations G-, H~ of G+, H*;
for the terminology compare [2, Section 22 and p. 207].

Proor oF (2.3): We first observe that for the limit-sphere K (g, S) the
following holds: For » integral positive K (q,S8)®" =K (q?",8), because
K _(q?0,8¢)=K _(q?",8). Now let K_(g,8) intersect G* in p. Then by

2.2

(2:2) pP1p? = q@1qP 2 ¢PK (9P, 8) z pP~'pP

which shows that ¢@” is a foot of ¢@- on K_(q?",S). A similar argu-
ment shows that ¢@ is also a foot af ¢ on K _(¢@",8). If follows (see
[2, (20.6)]) that ¢@* is the unique foot of ¢ on K _(q@”,S). This implies
that the co-ray to G* through ¢ is the positive sub-ray of H* beginning
at g.

(24) In a G-space R let @ be a motion and p a point for which
O<pp®@=inf, pxax®. If T is any segment from p to p®, then the curve
U T is a geodesic.

14*
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Proor: If y is an interior point of 7' then we will prove (yp®y®),
so that (see [2, (6.7)]) T'=T(y,p@)uT(pP,yP) is a segment; this im-
plies that U2 __ 7'® is a geodesic. Thus it suffices to prove that (y p@y®)

(and yy® = pp®P), which is seen as follows:
pp® = py + yp® = yp? + pPyP z yyd z pp?,

hence we have
yp® + pPyd = yy® = ppd.

A G-space homeomorphic to a plane will briefly be called a G-plane.

(2.5) Let @ be an orientation preserving motion of a G-plane. If G
is an axis of D, where 4 is some integer greater than 1, then G s also
an axis of D.

Proor: Assume G were not an axis of @, then

& =G0+ @
and
GO = GOP? = GP'P = GP = (';

hence @’ is an axis of @* and, according to (2.3), G' is parallel to G.
Let o be the half-plane bounded by G' and containing G'. Since @
preserves the orientation, s#°@ is the half-plane bounded by G and not
containing G. Repeating this argument we conclude that #®* is a half-
plane not containing G, G®, ..., GP*-1, hence # D*+#, which con-
tradicts GP*=G. We will see in the next section that this simple argu-
ment can be used to generalize some results of Morse and Hedlund, whose
original proofs are rather involved.

The next result strengthens (2.4) in case @ is an orientation preserving
motion of a G-plane and is basic for all that follows.

(2.6) TuEOREM: If D is an orientation preserving motion of a G-plane
P, p a point for which
P a poin f 0 < pp® = inf xad

zeP
and T a segment T(p,pP), then
¢=Ure

»=—00

18 a straight line (and @ is axial with axis G).

The proof proceeds in several steps. Put generally p@* =p*, T® =1",

etc.
(a) T ©s the only segment from p° to p'.
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For, if 8 is another segment joining p° and p!, then

Us and Umr

are, by (2.4), geodesics, hence cross each other at pl. Consequently, 7'
traversed from p° to p! followed by S traversed from p! to p® would be
an oriented, simple, closed curve whose image under @ is an oriented
curve with the opposite orientation, so that @ would not preserve the
orientation.

(b) G has no multiple points.

For otherwise ¢ would contain a simple monogon JM. Because of
(2.4) we may assume that p is the vertex of M. There are two possibili-
ties:

1) p=p°=p" for some v=2. Then

rr=TEtpy), T =Tppr?")=T0p)="T,

hence @ maps M =U;Z{T¢ (which is really a closed geodesic) on itself
and the interior of M on the interior of M, but then @ would, according
to a well-known result of Brouwer, have a fixed point inside or on M,
which contradicts inf,  pz2® > 0.

2) If p=p°is not a p’, then (p-1p°p") for some ». But, according to
(2.4) and (a) above, the only segment from p° to p! is T(p°, p*) U7 (p*,p)
which, therefore, coincides with 7', so that ¢ is again a closed geodesic,
and this leads to the same contradiction as before.

(¢) The arc A* of G from p° to p* is a segment.

We shall prove this by induction. So assume the assertion to be true
for r—1. If A" were not a segment, draw a segment S from p° to p”,
so that p°p”=Ilength of S<r-popl. .

S has no other point in common with 47 than p° and p". For S can-
not contain ¢nterior points of the arcs of G from p° to p! or from
pr1 to p”", because these are segments, so that S would coincide with
Ar. The same argument holds for the point p71, since T'(p° p*-1) and
T(pr—1,p’) are unique (see (a)), hence would lie on S.

Since G has no multiple points and @ preserves orientation, we have
(at least locally) a definite side of G defined, hence the segment S=8§°
and the curve S! intersect at some point ¢° for which

D = ¢ = §1nS2.

Finally, using the inductive assumption plp”=(r—1)-p°pl, we get
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repOpl > Plprl = plg®+¢qql+qlp ! = plg®+¢O¢L +¢°p"
z Pp"+4°¢ = (r—1)-p°p' +¢°¢
or p°p! > g% which contradicts

Popt = inf xx® .
xeP
(2.7) Comorrary: If I'={y,} (where —oco<t<oo, .4, =y, ¥, are
always understood) is a one-parameter group of motions of a G-plane,
and if a number ty, and a point p exist such that

0 < ppy, = inlf) T2y,
xe

then the orbit {py, — oo <t<oo} is a straight line.

Proor: The motions y, preserve orientation because this is true for
small £. By (2.6) the points py,,, —oo <v<oo, lie on a straight line @;
the same holds by (2.5) for py,, ,; for any positive integer 1 and any
integer v; hence py, lies for any ¢ on G.

In the next proof we shall use the following well-known lemma (see

2, (39.9)])
(2.8) If D is an axial motion of a G-space with axis A, and p is any
motion, then y=®@y is axial with axis Ayp.

(2.9) Let @ be an axial motion with axis A of the G-plane P. Let
I'={y,} be a one-parameter group of motions of P which commute with @
and such that Ay, + A for at least one t,. Then the lines A;= Ay, are all
distinct and are axes of @, hence parallels. They cover P simply. No v,
t+0, has a fixed point.

Proor: The hypothesis implies 4, , + 4 for positive integral ». The
line 4, is an axis of @, for it is, by lemma (2.8), an axis of y,"1Py,=D
(since Py, =y,P). Denote by 5, the half-plane bounded by 4 and con-
taining 4,, and put &#’,=#,y, Because y, preserves the orientation

Hy S Hoy  Hyy ©H
for any integers »>u. Hence
Ay #4 for p+0, and A+ A4 for p0,
and any positive integer ». Consequently
A, +#4 for t+£0.
If peAd put T=T(p,pP)<A. Then 44,=TA, which shows that
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AA,>0 for t+0. Similarly 4, 4, ,=44,>0. Since ., <H,,
the lines 4, form a “monotone” sequence. If 4, converges as » - co
then M2, #, +0 is a half-plane bounded by the line B=lim,_, A4,,.
This is, however, impossible, because in that case

BA,,~0 as v-—o0,

but
BA,, =z A,y A4, = 44, > 0.

Hence N2, #,, =0 and A, diverges. Obviously the same is true of

A,;,,» Where u is any fixed positive integer, —oco <» <oo. This implies

that A4, — oo <t< oo, cover the whole plane P. The 4, cover P simply

because they are parallel; this also implies that no p, has a fixed point.
We conclude this section with the following observation.

(2.10) If I'={y,} ts a one-parameter group of motions of a G-plane P,
and C denotes an orbit {p,}={py}, then any segment T either lies on C
or has at most two points in common with C.

Proor: If any proper subsegment 7" of the segment 7' lies on the
orbit O, put 1"=T(a,ay,). Then C=U_,_,_.T"y,. Hence C is a
geodesic which must coincide with the geodesic determined by the seg-
ment 7', so that T<C.

For an indirect proof of the second part of the assertion assume that
T contains three distinet points a, b, c. Then u, v with (aubd) and (bvc)
and not on C exist. Traversing 7' from u towards @ and b we reach first
points a’, b’ on C, similarly b", ¢’ are the first points of C reached when
traversing 7' towards b and ¢, respectively. If ¢ is sufficiently small,
then T'(a’,0") and T'(a/,b,) as well as T'(b"’,¢’") and T'(b,”,¢,”’) intersect
at interior points. But this leads to a contradiction since it would imply
that 7' and Ty, have two common interior points.

3. Geodesics on a G-surface. In this section we shall briefly state some
general implications of the results of Section 2.

Let R be an orientable, not simply connected G-surface whose uni-
versal covering space is a G-plane P (not necessarily straight), that is,
R is topologically any orientable surface except the plane or sphere. We
shall interpret the fundamental group % of R as the group of covering
motions of P, and use the correspondence between free homotopy classes
of R and classes of conjugate elements of . The motions in { preserve
orientation because R is orientable.

If the free homotopy class of the closed curve K in R contains a shortest
curve K', then K’ is a closed geodesic (see [2, (32.1)]). When & is an ele-
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ment of the class of conjugate elements in & determined by the closed
curve K, then a point p of P with pp®@=inf, pxx® exists if and only
if the free homotopy class of K contains a shortest curve. By (2.6) the
geodesics in P lying over this curve are straight lines.

Under the present assumptions it then follows from (2.6) that if the
homotopy class determined by K contains a shortest curve, then the
corresponding motion @ is axial, and from (2.1) and (2.2) that a closed
geodesic belonging to K traversed » times is the shortest curve belonging
to » K. Finally from (2.5): if K is freely homotopic to 1K then a shortest
geodesic in K is the shortest geodesic in K traversed A times. This was
proved for compact Riemannian surfaces of genus greater than one by
Morse [5], and for those of genus one by Hedlund [3].

For applications in the next section we also mention that, if R is
compact, then every motion in ¥ is axial (compare (2.6)).

4. Tori with one-parameter groups of motions. Let K be a torus
metrized as a G-space which possesses a one-parameter group I'p={y;'}
of motions. Denote by P the universal covering plane of R; then the
motions of P over {y,/} form a group (see [2, (28.9)]). The identity com-
ponent of this group is a one-parameter group I'= {y,} of motions of P.
The elements of I" commute with the motions of & (see [2, (28.11)]).

Since the axes of motions in & are not all parallel there is at least
one axis of a motion in § which does not go into itself under y,. By (2.9)
no y,, t+0, has a fixed point. For each ¢ a point peP with

0 < ppy, = inf xay,
xeP

exists, because there is a p with
ppy, = inf xay,,
zelF

where F is a bounded, closed, fundamental set (e.g. a parallelogram) of
R in P. If y is an arbitrary point in P then a motion @& § with y®eF

exists, and
yyy, = yPyp@ = y@ydy, = ppy; .

The points p,= py, then form a straight line ¢. Using (2.9) again we can
say that, if G is not an axis of the motion @ in §, then the axes of @
(namely the images under v, of an axis of @) cover the plane P simply
and @ intersects these axes. Thus 2@ is constant, since there is an axis
of @ through x and «® and zx® =inf,  pyy?d.

Two cases are now possible:
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(1) G is not an axis of any motion in ,

(2) @ is an axis of some element in .

We shall first discuss the implications of (1).

Obviously, G cannot pass through any pair of points x and 2®, where
@ is any motion in §, because this would imply the existence of two
different straight lines through x and z®.

Choose any point peG and two motions @, and @, in §F with different
axes. Denote by 4 and B the axes of @, and @, through p. Form the
intersections p,=GnBP, v= 11, £2, ..., and put p,=p. Finally, let
the axes B®,’ intersect 4 in g,.

For each p; there is a motion of the form @, *®*# which carries p;
into a point p;” of the segment T'(p,p®P,). No two such points, p," and
p;’, 1%J, can coincide, because then a suitable motion D7D Dl e F
would carry p;eG into p;e@, which was just seen to be impossible.

But for any p,” and p,;’, 1+j, there is a translation along B (namely
D'y, D, 7 D,¥, t and u depending on 4, j) which carries p;” into p;/. The
set {p;'} has at least one accumulation point on 7'(p, p®@,), which implies
that arbitrarily small translations along B exist. It follows that all
translations of P along B exist. In addition, all translations of P along
G+ B exist. These translations generate together a transitive abelian
group of motions of P, so that P is a Minkowski plane (see [2, (50.1)]).
Thus in case (1) we have proved:

(4.1) TurOREM: If a G-torus R possesses a one-parameter group of
motions and no orbit of this group is a closed geodesic, then the metric of R
1s Minkowskian.

Now consider the case (2), where @ is the axis of some @e . Choose
a point p not on an axis of @. Since the axes of @ form a closed set, there
is an (oriented) axis A" of @ closest to p ““from above” and an axis B*
of @ closest to p “from below’.

(4.2) Every point p between A and B lies on two lines LT and M™ such
that every positive sub-ray of L* is a co-ray to A" and every negative sub-
ray of L* is a co-ray to B~; for M the roles of A*, A~ and B*, B~ are
interchanged; LA=LB=MA=M B=0.

Proor: Choose a motion @,e § whose axes are not axes of @ (4, B
are axes of @) and such that the points g,=p®,9” lie on the same side
of B as 4 does. There is an axis through p and g, and, as » — oo, the
line g(p,q,) converges to a line L. For each » the line g(p,q,) intersects 4
and all parallels to A, in particular B (compare (2.9)). The limit line L
intersects neither 4 nor B, because it does not intersect 4, and 4 and B
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are parallel. If we choose 7, on g(p,q,) such that (r,pg,) and pr,=con-
stant then the sub-ray of L from r=lm,_, .7, through p is a co-ray to
At (for proper orientation of 4) and hence the sub-ray from p of this
co-ray is the unique co-ray from p to L (see [2, (22.19)]). Similarly the
opposite sub-ray of L from p is the co-ray to B~. The construction of
M is analogous.

If for increasing ¢, uy,, ueA, traverses A" in the positive sense, then
Ly, lies for all negative ¢ between L and A, moreover Ly, lies for ¢, <¢
between Ly, and A. Therefore

A’ = lim Ly, exists.
t—>—o0
4’ is a straight line, which goes into itself under all y,, hence A’ is an
axis of the ¢, and therefore parallel to 4. Since 4 was an axis of @
(or v,) closest to p it follows that 4"'=A. This implies

Hence L A =0; similarly for L B=M 4 =M B=0. This finishes the proof
of (4.2).

We now consider a motion Q=@®,y,, where #,+0 and @&, but, as
in (4.2), @,+y, for all £. Obviously £ preserves the orientation, and it
has no fixed point, because y®, =yy_, would, in contradiction to (2.9),
imply that the axes of @, through y and yy_, +y have the common point
y®,. Moreover, 2 commutes with all elements of §. It follows as in
the beginning of the section, that a point ¢ with 0<gqQ=inf  px2
exists. The theorems (2.6) and (2.9) yield then, that £ has an axis G,
and that the lines Gy, are also axes of 2 and cover P. Therefore there
is an axis of £ through a given pair of points z, 20.

It should be noticed that it follows from the preceding remarks that
for each £+ 0 we can construct a family of parallel, straight lines covering
P, namely the axes of the motion @y,.

Now let a point p lie on an orbit of y, which is a straight line L. The
axis of @,y through p depends continuously on ¢ and tends for t — oo
or ¢t > —oo to the line L, because the point p®P,y, traverses a parallel
to L. Hence, every point y not on L lies, for a suitable ¢, on an axis of
Dy, through p. Thus all geodesics through p are straight lines and axes
of motions ®,y,, where @, &. Thus:

(4.3) If p lies on an orbit of y, whick is a straight line, then every
geodesic through p is a straight line and axis of a suitable motion Dy,
where D€ F.
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We next turn to the situation of (4.2) and preserve the notations of
(4.2). Denote by D’ the closed, angular domain bounded by L and M
which contains 4 and B. Let again @€ §, but @, %y, for all {. By the
construction of 4 and B the points p®,y, lie all in D'. The axis of Dy,
through p intersects A (and B), depends continuously on #, and tends for
t — oo to one of the lines L, M and for ¢ - — oo to the other. Hence,
given any interior point y of D’ there is a ¢ such that y lies on an axis
of @y, through p.

Any geodesic which contains a proper segment in D’ with center p is
therefore a straight line which lies entirely in D’. A geodesic containing
a proper segment with center p which does not lie on D’ has no common
point with D’ other than p. Otherwise it would contain a sub-curve C
beginning at p with endpoint on L or M, say L, such that C lies, except
for its endpoints, in D''=P—D’. Then a ¢+0 would exist such that
Ly, contains a point ¢ of € and the closed strip bounded by L and Ly,
contains C. Then C would not cross Ly, at c.

Thus any geodesic through p which contains a point of D'’ lies, except
for p, entirely in D", in fact, a half geodesic H with origin p and contain-
ing a point of D" stays (except for p) entirely in one component of D"';
otherwise a suitable axis of @, would touch a sub-curve of this half
geodesic without crossing it. Moreover, such a half geodesic H cannot
contain a ray. Since H—p<D" it suffices to show that H is no ray,
and this may be seen as follows:

Assume H — p lies in the component of D’ bounded by co-rays from
p to A' and B*. Then H has positive distance from 4 and B, because
otherwise it would be a co-ray to A" or B*, see [2, (22.22)], whereas
the co-rays from p to A™ and B* are sub-rays of L and M, see [2, (22.19)].
As in the proof of (4.2) we see that H' =lim, ,  H® exists. It would be
a straight line with positive distance from A and B which goes into it-
self under @, and hence would be an axis of @, contrary to the definition
of 4 and B.

(4.4) Under the hypothesis and with the notations of (4.2) every point
in the interior of the closed angular domain D' bounded by L and M, and
containing A and B, lies on o straight line through p which is an axis of a
suitable motion @y, where D,eF and Dy +y,.

A half geodesic with origin p which contains a point of D' =P~ D’ les,
except for p, entirely in one component of D" and contains no ray.

We notice the following corollary of (4.1) and (4.3):

(4.5) If a G-torus possesses a one-parameter group of motions and all
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orbits of this group are geodesics, then the universal covering space of the
torus is straight.

Proor: If no orbit is a closed geodesic then (4.5) follows from (4.1). If
all orbits are geodesics and one is a closed geodesic, then it suffices,
because of (4.3), to show that in the universal covering space all orbits
of y, are straight lines. But this is obvious: if a segment 7' connecting
two points of an orbit did not lie entirely on this orbit, then we could
find another orbit of y, which touches 7' in an interior point without
crossing it, but the orbit is, by hypothesis, a geodesic.

If the metric of R is Riemannian then it is euclidean, because the or-
bits are equidistant geodesics. But the metric need not be Minkowskian,
in fact, the geodesics need not even satisfy Desargues’ theorem if the
metric is not Riemannian, see [2, (33.5)].
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