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THE LAW OF SUPPLY AND DEMAND

DAVID GALE

1. Introduction. The concept of a general economic equilibrium based
on balance of supply and demand has from the first played a central
role in theoretical economics. In its simplest form the situation can be
described roughly in the following terms: In a free market the price of
each commodity depends on the extent to which it is demanded by
consumers. If at a given set of prices the demand for a good exceeds
the available supply then its price rises thus causing the demand to
decrease, while if supply exceeds demand the price will drop and demand
will thereupon increase. By this mechanism it is supposed that prices
will eventually regulate themselves to values at which supply and demand
exactly balance, these being the prices at economic equilibrium.

It is only comparatively recently that rigorous investigations have
been made as to the conditions under which such a balance is possible.
Notable among these are the papers of Wald, especially [5], and most
recently some results of Arrow and Debreu [1]. Wald, using methods of
analysis, proves an equilibrium theorem under rather special assumptions
on the nature of demand functions. We shall here study a model closely
resembling that of [1]. However, where the latter makes use of some
rather sophisticated results of algebraic topology, we shall obtain a simple
proof of the existence of an equilibrium using a well-known lemma of
elementary combinatorial topology.

In the next section we describe the model to be investigated and state
the equilibrium theorem which is proved in Section 3. In Section 4 we
apply the principal lemma to a model in which the units are divided into
consumers and industries, the consumers sharing profits in industries.
In Section 5 a set of conditions which guarantees uniqueness of equilib-
rium is given. Section 6 deals with an equilibrium theorem for the special
case of the Leontief model; the proof is based on linear equations and
inequalities thus being independent of the principal theorem. Finally,
Sections 7 and 8 are concerned with preference orderings and supply
functions originating from such orderings; essentially the first theorem
of Arrow and Debreu is obtained.
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2. The model. The model to be considered will involve n goods
Gy, ..., G, and m economic units Uy, ..., U,. The set of goods includes
all types of labor and services as well as material commodities. The
economic units may be thought of as either consumers or as industries,
their essential property being that each unit is capable of supplying
certain sets of goods while at the same time consuming other sets of goods
supplied by the other units. A typical consumer, thus, supplies labor of
various types while consuming food, housing, clothes, etc. An industry
may supply, for example, consumer goods while consuming various types
of raw materials, and so forth.

The amounts of the goods @, ..., G, supplied or consumed by
a unit U in a certain fixed time interval may be given by a vector
x= (& ..., &)

in euclidean n-space. The jt! coordinate &; represents the amount of the
good G; and is positive or negative according as G; is supplied or con-
sumed. Such a vector is called a commodity bundle or an activity of U.
In general, a unit is able to act in various ways; the set X of all possible
commodity bundles z is called the commodity set of the unit.

DerINITION. A model M consists of a set of goods G4, ..., G, and
units U,, ..., U, with corresponding commodity sets X, ..., X,,.

AssumprioN 1. The sets X; are closed, bounded and convex and con-
tain the null vector 0.

The assumption calls for some comment. The condition of bounded-
ness is natural in view of the fixed time interval, and the closedness
represents an idealization of a topological character which is not very
restrictive when boundedness and convexity are assumed. The condition
of convexity is somewhat more restrictive. Together with the fact that
the null vector belongs to each X,, it means that if z; and x, are two
bundles in X; then so also are all bundles of the form «z;+ Sz, where
o, 20 and x+p=1.

The problem is now to determine how the model M should operate.
We must answer the following questions: (a) What goods shall the
industries produce? (b) What types of services shall the consumers
supply? (c) How shall the goods produced be distributed among the
consumers ! In our model these three problems are all included in the
single question: What bundle x; shall be assigned to the unit U, from the
set, X, ? Clearly such an assignment of bundles x; to units U; must satisfy
the condition that the total amount of each good consumed by all the
units must not exceed the total amount supplied. In other words the
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set of bundles z; must satisfy the simple condition 2z;2>0.1 We are thus
led to make the following

DEeFINITION. A feastble operation of the model M is a set of bundles
%, t=1, ..., m, where z; € X; and 2z, 20.

In what follows we shall show how a feasible operation of A can be
brought about by the mechanism of prices and free competition. In so
doing we shall in addition to answering questions (a)-(c) give an answer
to a fourth question: (d) What shall be the relative prices of the goods G, ?

A price vector p=(ny, ..., m,)=0, is an assignment of prices to the
goods G, 7; being the price of one unit of G;. Since only relative prices
are significant it is convenient to make the normalizing assumption that
2n;=1. The set of all price vectors P is thus a regular (n—1)-simplex.

We now assume that we have a free competitive economy in which
each unit U, may choose a commodity bundle x; which, intuitively speak-
ing, maximizes its satisfaction. This choice will clearly be a function S;
of the prices p. In the first place, the bundle chosen by U, must be such
that the income received from goods supplied is sufficient to pay for
the goods consumed. This is the well-known budget inequality which in
our notation takes the simple form, p-S,(p) = 0, that is, the scalar product
of p and S,(p) must be non-negative. Subject to this inequality it is
generally assumed that each industry acts so as to maximize profits
while each consumer chooses a bundle which maximizes his utility as
measured by some appropriate method.

For our present purposes the motivations of the units U; in making
their choices is irrelevant, the only requirement being that the functions
S, satisfy certain rather weak restrictions. It will, however, be necessary
to allow the functions S; to be set-valued rather than ordinary (single-
valued) functions as will be evident from the fcllowing discussion. We
first give the conditions on the functions S,.

AssumprioN II. Corresponding to each unit U, there is a function S;,
called the it unit’s supply function, defined for each price vector p in
P and such that 8;(p) is a subset of X; subject to the following restric-
tions:

(1) S;(p) is a non-empty convex subset of X,.

(2) If « € 8,(p) then z-p=0.

(8) S, is continuous in the sense that the graph of §; is a closed subset

of PxX,.

1 We adopt the usual conventions, # >0 means all coordinates of x are positive,
2 2 0 means all coordinates are non-negative, and z = 0 means z = 0 but z == 0.
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Note that the term supply function has been used in a broad sense.
The jtr coordinate function s;; of .S; represents the amount of G; supplied
by U, as a function of prices. If s;(p) is negative this means that U,
supplies a negative amount of G; at prices p, meaning, of course, that U,
demands a positive amount of G; at these prices. Thus, a negative supply
of a good represents a demand for this good.

As to the three conditions, (2) is again the budget inequality. Con-
cerning conditions (1) and (3), for the case where U is an industry, it is
reasonable to suppose that U chooses those bundles which will maximize
its profit, that is

4) S8(p) = {x|2zeX and p-r=maximum}.

Geometrically, S(p) is the intersection of X with its supporting hyper-
plane with p as outward normal vector. Since X is bounded, closed and
convex, 80 also is S(p) so that condition (1) is satisfied and it is a simple
matter to verify that (2) and (3) are as well. As a simple special case,
suppose that X is a line segment of all vectors Ax where z is fixed and
0=<2<1. Then, according to (4),

{z} for x'p > 0,
S8p)=3 X for zp=0,
{0} for =z-p < 0.
From this we see that it would be too restrictive to require the supply
functions to be single valued.

The justification of assumption II when the unit U is a consumer is
more involved and will be taken up in Section 7.

We shall in what follows have occasion to use a strengthened form of as-
sumption II in which the budget inequality is replaced by an equation, thus

(2) If xeS;(p) then z;-p = 0.
This condition means that each of the units spends its entire income on
consumption from the other units. Henceforth, when condition (2') holds

for the functions S§;, we shall say that we have a model without savings.
We can now state the basic equilibrium theorem as follows:

THEOREM 1. There exists a price vector p, and a feasible operation
Zy, ..., %, of M such that x; € Sy(p,) for i=1, ..., m.

We shall henceforth refer to p, as an equilibrium price vector and the
bundles z; as equilibrium bundles.

In concrete terms, this theorem states that if prices are appropriately
set then it is possible for each unit to be assigned a commodity bundle
of its choice among those bundles which it can afford.
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Note that our model includes as a special case the situation of pure
exchange. This is the case of a group of individuals each initially pos-
sessing various amounts of the goods G;. If we assume some or all of
the participants can increase their satisfaction by exchanging some of
their holdings, the equilibrium theorem shows how such an exchange
can be brought about by the mechanism of prices. A special case of this
situation was treated by Wald in [5].

Theorem 1 is a simple corollary of the following abstract lemma which
is the central mathematical result of this paper.

PriNcIPAL LEMMA. Let S be a bounded continuous set-valued function
Jrom the unit (n—1)-simplex P into R, such that

(a) S(p) is non-empty and convex for all p € P,

(b) 2f x € S(p) then x-p=0.
Then there exists pe P and x € S(p) such that x=0.

This lemma will be proved in the next section. We shall now show how
the lemma implies theorem 1.

For the model M with commodity sets X; and supply functions S,
we define the aggregate commodity set X,; by

XM=2X,.={a:|x in,x EX}
i1

=1

and the aggregate supply function by

=é’8i(p)={ |x 23: x; € Sy( p)}.

Since the functions §; satisfy assumption IT one verifies at once that
S, satisfies the hypothesis of the principal lemma. In view of the lemma,
therefore there exist vectors p € P and = € Sy(p) such that £=0. Now
this z is of the form x= Xx; where z; € S;(p) and hence the bundles z;,
give the desired feasible operation of the model.

We conclude this section with the following observation. Theorem 1
states only that at equilibrium supply is at least equal to demand, not
that the two exactly balance. One cannot in general expect perfect
balance. For example, a given process of production might involve sup-
plying certain by-products of which the total output is not required by
consumers at equilibrium. In this case a certain amount of over-produc-
tion would be inevitable. Now suppose that p,= (=, ..., =,) is an equi-
librium price vector and x; are corresponding equilibrium bundles. Let
x=2x,=(&, ..., &). We say that G, is over-produced at equilibrium if
§,>0. Since there is in this case a surplus of G; one would expect its
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price to drop to zero. This is indeed true for the important special case
of a model without savings. We then have the following:

RemaARk. If the supply functions S; satisfy the sharpened condition
(2'), then if G, is over-produced at equilibrium its price is zero.

To see this, note that since z;-p=0 for all 7, we have (X%;) - p=z-p=0
or

»”
2ém; = 0.
=

Since all &; and &; are non-negative it follows that if &, >0 then 7, =0.
We thus have the fact that a good which is over-produced at equilibrium
becomes a free good, a result which has been well known to economists

for some time.

3. Proof of the principal lemma. The tool needed to prove the prin-
cipal lemma is a well-known result of Knaster, Kuratowski and Mazur-
kiewicz [4] on coverings of simplexes (lemma 1 below). It was used
by these authors to prove the Brouwer fixed point theorem and still
represents the most direct way of obtaining that classical result.

Consider the (n—1)-simplex P in R, consisting of all points p=
(7, . .., m,) such that p=0 and 2z;=1. If J is a subset of the indices
1, ..., n, a face ¥/, of P is defined by

F; ={p|peP, and 7;=0 for j¢J}.

Lemma 1. Let Cy, ..., C, be a family of closed subsets of P with the
property that if F; is any face of P then F;<=U;_;C;. Then the sets
C; have a non-empty intersection.

A simple illustration of the lemma is the case of a triangle covered by
three closed sets such that the set containing a given vertex does not
intersect the opposite side. For a self-contained proof of the lemma
see [2, pp. 145-149].

We can now easily prove the principal lemma for the special case
where the function § is single valued and hence continuous in the ordi-
nary sense. For this case let s, be the j** coordinate function of S.

Define C;={p| s;(p) 2 0}. Since s; is continuous, C; is closed.

Let K be a subset of the indices 1, ..., n, say, K={j| j<k}, and let
Fx be the corresponding face of P. If p € F then we may write p=
(7> + o, 7 0, ..., 0). Now from condition (b), 8(p)-p=0, or

n k
%’s,-(p)n, = gsj(p)nj 0.
j= =
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Since 7; 2 0 for all 4, it follows that s;(p) = 0 for at least one j € K. Thus
peU; gC; or Fr< U, xC;, so the hypothesis of lemma 1 is satisfied.
It follows that there exists p € M7_,C;, and for this vector S(p)20 as
was to be shown.

The proof for the general case is a technical matter of approximating
the function § by single-valued functions in a manner similar to that
used by Kakutani in [3].

If pe P and xe R, we shall denote by |p| and |z| the euclidean norms
of these vectors, that is, |x| = (x-2)}. For any real number «, the symbol
[«] denotes the vector all of whose coordinates are equal to «.

Since the function 8 is bounded there exists an upper bound x such
that |z| Su for all x € S(p) and all p e P.

We now proceed with the approximation process. For each positive
integer k let A, be a simplicial subdivision of P. Let d, denote the maxi-
mum diameter of the subsimplexes of A4,, and choose A, so that d, <
1/(uk).

We now define a sequence of single-valued functions S* on P as follows:
If p is a vertex of A, choose S%(p) to be a point in the set S(p)+[1/k].
Extend S* to the rest of P linearly in every simplex of A,. Then S* is
single valued and continuous. We shall now show that condition (b)
of the principal lemma is also satisfied, that is, S¥(p)-p=0 for all pe P.

For any pe P we may write p=24p; where 4,20, X2i;=1, and
P j=1, ..., n, are the vertices of a simplex of the subdivision 4,, so
[p;—p;| <6 Let a;=8%p;) and let x=8%p)=24zx; Then |p—p; <
£0,=1/(uk) and ;| £u, so from the Schwarz inequality

On the other hand, p;-x; 2 1/k from the definition of S¥, hence it follows
that p-2;20. Since z=2Ax; and 4;20, we conclude that p-x20.

It now follows from the proof of the principal lemma for the single-
valued case that for each k there exists a vector p* such that S%(p*)=0.
Let p*=27_, A%; p*;, where p¥; are vertices of a simplex of A, containing p*.
Let z*=8%(p*) and *;=8%(p*;). Since P is compact and S is bounded
we may by choosing convergent subsequences assume that the sequences
Pk, o*, p*;, and x*; converge. Let p*—p. Then also p*;—>p, since d;—0.
Let «*;>x;. Now a*; =y, +[1/k] where y*; € 8(p¥;), hence y*;, ;. Since
S is continuous, it follows that x; € S(p). Finally, 2*¥—~z. Since 2*20,
80 also is z, and since 2 lies in the convex hull of the points 2*;, we have
in the limit that x lies in the convex hull of the points x;. Thus, since
S(p) is convex, we conclude that x € S(p) and the proof is complete.

Math. Scand. 3. 11
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4. Industries and profits. The model of [1] differs from the one
treated here in that there the economic units are explicitly divided into
the two classes, industries and consumers (‘“production” and ‘“‘consump-
tion” units). The industries act to maximize profits, the consumers to
maximize utility. To close the model, profits from industries are re-
distributed to consumers who are thought of as holding stock in the
industries. We shall see that an equilibrium theorem for this more general
model follows readily from our principal lemma.

Let the economic units U, ..., U,, be divided into two classes, in-
dustries I,, ..., I, and consumers C,, ..., C,, where s+t=m. Further,
let each consumer C,, be entitled to a share a;, of the profits from the
industry I, where

¢
(5) Doy, =1 forall i,
k=1

meaning that the profits from each industry are to be completely distrib-
uted among the consumers. Then the income the consumer C,, obtains
from the industries is (X%_,0;.2;)" P-

Let §; be the supply function of I; and 7', the supply function of C),
and let X, and Y, be the corresponding commodity sets. We again
agsume conditions (1) and (3) of assumption II. Condition (2) must,
however, be changed to take account of the additional income to con-
sumers. The new assumption is:

(2a) For industries, if z; € S;(p) then z;-p=0.

(2b) For consumers, if y, € T)(p) then

8
(6) yk'p+(§aiw)-r 20.
1=
The equilibrium theorem for this model then takes the following form.

TaEOREM 2. There exists a price vector p, and a feasible operation
Zyy oy Xy Yip - - -» Yy Of the model such that x; e S,(p,) for i=1,...,s
and y,, € Ti(p,) for k=1, ..., ¢t

Proor. Consider the aggregate supply function
8 ¢
Sp) = Z8:p)+ 2 Twlp)

8 ]

= {z | z=,4‘{xi+k2;yk’ x; € 8y(P), Ys ETk(p)}-
4= =

We must show that S satisfies the hypothesis of the principal lemma, in

particular condition (b) (the other conditions follow at once). To see
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this, sum inequalities (6) over all indices £ and use (5) to obtain

(Sw+x)pz0,
which is the desired relation.

The principal lemma now implies theorem 2 by the same argument
as was used in proving theorem 1.

ReMARK 1. Note that condition (2a) was not used in the proof of
theorem 2 which is therefore valid even if industries are allowed to
operate at a loss, provided this loss is distributed among the consumers
holding shares.

REMARK 2. In the important special case of a model with no savings
by consumers, inequalities (2b) become equations and in order for these
equations to hold the quantity (2%_,x;.2;)-p must have the same value
for all bundles x; € S;(p). This will be true, for example, if each industry
acts to maximize profits so that S,(p)={z |z € X; and x-p=maximum}.

5. A remark on uniqueness of equilibrium. It is naturally of in-
terest to determine conditions under which the equilibrium prices and
bundles will be uniquely determined. If one makes the assumption that
an increase in the relative price of a good causes a decrease in the net
demand for that good (thus an increase in the net supply) then one can
give a very simple uniqueness proof.

TurorREM 3. Hypotheses:
(@) The functions S; are single valued.
(b) Condition (2') holds.

(¢) If prices m;, ..., m;, increase while all others decrease or remain
fized, then the met supply of at least ome good G, ..., G; will
increase.

Concluston: The equilibrium is unique.

Proor: Let p be an equilibrium price vector and let z,=8,(p). Let
2y, =x=(&, ..., &,). Suppose now p'%p, and let y,=8,(p’) and
2Yi=y=(n - .., n,). From (c) it follows that for at least one index j,
say, j=1, we have n;" >n; and n,>&,. From (b) we get,

(7) i = 0.

Since the z, yield a feasible operation, &, =0, hence 7, >0, and since
7, >0, (7) implies that for at least one index j, n; <0. This means that
the bundles y; do not give a feasible operation, hence the equilibrium
is unique.

11*
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The hypotheses of theorem 3 are rather restrictive and may fail to
hold in practical cases. The problem of finding reasonable conditions
on the supply functions which will insure uniqueness would seem to offer
a significant field for further study.

6. An example. As a concrete illustration of the equilibrium concept
we here apply it to the special case of the so-called Leontief model.
For this special case we give a self-contained proof of the existence of
equilibrium. In this model there are #n +1 goods, G,, G4, ..., G,, where
G, is labor and G, j > 0, are various material goods. The economic units
consist of n industries, I, ..., 7,, and one consumption unit C,.

We make the following assumptions:

(i) Each industry I, is able to supply (produce) only the good G,.
The only good which C, can supply is labor, G,.

(ii) Labor is required as an input to each industry I,. C, can supply
at most the amount &, of G,

(iii) The commodity sets X;,¢=1, ..., n, consist of line segments.
If x;; is the amount of G; supplied by I; when consuming one unit
of labor, then X, consists of all bundles of the form xz,=
AM—=1,04, ..., 004), Where 024 5«, Thus each industry can
produce at any level, 4, provided that it does not consume more
than the total available supply of labor. Note that from condi-
tion (i) oy <0 for 457,

(iv) The industries I; are able to supply simultaneously a positive
amount of each good G;, j > 0. In other words, there exist numbers
;> 0, such that X7 u;a,; >0 for all j> 0.

Condition (i) states that there is no joint production in the model.
Condition (ii) is self-explanatory. Condition (iii) says that there is essen-
tially only one process for producing each good; and condition (iv) is the
requirement that it be possible to make all goods G; available for con-
sumption. In addition we assume

(v) Eaech industry acts so as to maximize profits. In other words

S») = {z;| #;€ X; and z;p = maximum} for ¢>0.

The commodity set X, of C, can be an arbitrary compact convex set
subject only to conditions (i) and (ii). That is, zy=(&, &, ..., &,) e X,
implies &)<, and &; <0 for all j>0. For the theorem that follows the
supply function S, can be quite arbitrary subject only to the budget
inequality.

Subject to these conditions we shall show that there exists an equilib-
rium in the sense of theorem 1 satisfying the additional conditions:
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(A) All prices n; are positive.
(B) Profits are zero for each industry I,.
We state this result in the form of a theorem as follows.

TaEOREM 4. If M is a model satisfying conditions (1)—(v), then there
exist @ unique equilibrium price vector p, and bundles y,, xy, . . ., x, such
that py>0 and py-x;,=0 for i=1, ..., n.

We shall give a self-contained proof of this theorem which is inde-
pendent of theorem 1 and is elementary, that is, does not require results
from topology. For this purpose we shall need some preliminary lemmas.

LEMma 2. Let A be an nxn matrix with coefficients «;; sueh that
%;; S0 for i%j and suppose there exists a vector x>0 such that x4 > 0.
Then yA =0 implies y=0.

ProoF. Let z=(&y, ..., &), y=y, ..., n,) and let 6=min,(;/&;),
say, 0=mn,/&;. Then &,0 <#; for all 1, so oy n; £ 00;y&,0 for e 1 and ;=
a436,0. Therefore 0 < Xio;m; < 026,18, Since 2oy, is positive by hypo-
thesis, it follows that =0 and hence #; =0 for all 4.

Lemma 3. If A is an nxn matriz such that yA 2 0 implies y = 0, then
A 18 non-singular and p4' >0 implies p> 0.

Proor. By hypothesis, y4 =0 implies y =0, but also —y=0 since
—yA=0, and so y=0. This shows that 4 is non-singular. Let now y;
be such that y,4=(0,...,0,1,0,...,0) with 1 at the j*h place, j=
=1,2,...,n Then y;=0 by hypothesis and hence y; >0, since y;4 +0
implies y;+ 0. Putting p=(n,, ..., n,) we obtain from p4’ >0 by mul-
tiplication by y;" from the right, n;=pA’y;,’>0 for j=1,2, ..., n.

Proor or THEOREM 4. Let A be the matrix whose entries are «;,
6,j=1,...,n, and let a;=(oy, ..., 5;,). From conditions (iii) and
(iv), 4 satisfies the hypothesis of lemma 2. Since prices are only deter-
mined up to a positive factor we may make the normalizing assumption
that the price of labor is unity, that is, mg=1. From lemma 3, 4 is
non-singular and there exists one and only one non-negative (price) vector
p=(my,...,m,) such that p-a;=2;7;x;=1 for all &. This is just the
statement that the profit to each industry I, iszero. Since «,; <0 for i+,
it follows that #; > 0, hence p > 0. Now let yo= (79, — 1, - - -» ~ ) ESo(Po)
where py=(1, 7y, ..., n,) and ny Sy, and let y=(n,, ..., 7,). Again by
the non-singularity of A there exist numbers A; such that Xia;=y,
and since y=0 it follows from lemma 2 that 4,20 for all 4. Since
pra;=1 for all i, we have p-Zla,=22=p-y, but p-ysy, from
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the budget inequality for C,. Now let z;=4,(—1, a4, ..., x;,). Since
all profits are zero, it follows that x; maximizes profits to I, hence
z; € 84(p,). Finally we see that y,+2z;20, since 7,—27;=0, and
—n;+ 2 A;05=0 for all j>0. We have, therefore, a feasible operation
of M, and the proof is complete.

Observe that in this example the equilibrium prices p are quite in-
dependent of the consumer’s preference, being a function only of the
nature of the industries I,.

7. Supply functions and preference orderings. We now return to
the problem mentioned in Section 2, namely that of justifying the
conditions of assumption II for the supply functions of consumers.
Since the validity of the principal lemma hinges on these conditions some
further discussion of them seems in order. We shall show here that they
can be derived from simple assumptions concerning the preferences of
the consumers.

We assume again that the commodity space X of the unit U is a com-
pact convex subset of R, and assume that U orders the bundles of X
by a simple ordering relation X. The formula « X y means that the bundle
x is at least as satisfactory to U as the bundle y. Since X is a simple
ordering it satisfies:

"(a) %y and yX<z implies zXz.

(b) For any z,y € X, either zXy or yXx.

If both 2 Xy and y X x we write x ~y, while if Xy and z+~y we write
x>y (in words, x is preferred to y).

Derinrrions. The ordering X is called continuous if @ >y implies there
exist neighborhoods U of x and V of y such that

x'>y" forall z’elU andall y'eV.

(It is easy to show that this condition is equivalent to an apparently
weaker one, namely the existence of neighborhoods U’ of x and V’ of y
such that 2’>y for all 2" € U" and z>y’ for all ¥’ € V")

The ordering X is called convex (strictly convex) if x~y and 0<i<1
implies Az + (1 -A)y Xz, (> x).

Let St(x)={a'| ' X}, S-(x)={'|xZa'}.
The following property follows at once from the definitions.

LeMma 4. The ordering X 18 continuous if and only if S+(x) and S—(x)
are closed for all x € X.

Not quite so obvious is the following:
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LeMmA 5. A continuous ordering 2 is convex if and only if S*(x) s
convex for all x € X.

Proor. The sufficiency of the condition is obvious. Conversely, sup-
pose y, z € S*(x), thus y, zX 2. Let [y, z] denote the segment from y to z
and suppose there exists w e [y, 2] such that x>w. Since X is convex
[y,21e X. Let ot=8*(x)n [w,y], o-=8-(x)n [w,y]. Since [w, y] is
connected and ¢+ and o~ are closed and non-empty, there is a point
y' €otno-, 80y ~x. Similarly, there is a point 2’ € [w, 2] such that 2’ ~z.
But we [y, 2'] and, since X is convex, wXTy’ ~&, giving a contradiction.

If C is a subset of X, a point ¢ e C is called mazximal if cZx forall xeC.

Lemma 6. If C is a closed subset of X and 2 is continuous then C
contains a maximal element.

Proor. For each ze(C, let CHx)=8*+(x)n C. The sets C+(zx) are
closed and nested by inclusion, hence, by the compactness of C there
exists ¢ € M,.oC*(x). This is the desired maximal element.

DeFINTTION, Let p be a price vector and let 2 be the preference order-
ing of the unit U assumed to be continuous. Let C(p)={x|zcX, x-p=0},
thus C(p) is the set of all bundles satisfying the budget inequality at
prices p. The supply function S of the unit U is then defined by

8(p) = {x] x is maximal in CO(p)} .

The following two theorems establish the connection between preference
orderings and supply functions.

TueoreM 5. If X is convex then S(p) is convex for all pe P. If X
18 strictly convex then S is single valued.

Proo¥r. Suppose z, z' € S(p). Then z, 2" € C(p) and (Ax+ (1 —-1)z')-p=
lxp+(1—A)z -p20 so lx+(1-A)x' eC(p). I Z is convex then
Az+(1—=2)x'Zx and since z is maximal in C(p) we must have
A+ (1=22'~x so Ax+(1—A)z' e S(p). If X is strictly convex then
x=uz'; for otherwise we would have }(x+2’) >« contradicting the maxi-
mality of «.

In order to show that S is continuous we are forced to make an ad-
ditional and somewhat unnatural assumption on the set X.

AssumptioN III. The set X contains a positive vector, that is, there
exists x; € X such that x,> 0.

This amounts to assuming that U can supply a positive (though ar-
bitrarily small) amount of each good ;. This same assumption was made
in [1] in proving the first equilibrium theorem of that paper.
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THEOREM 6. If X is continuous and X satisfies I1I, then S is con-
tinuous.

Proor. We must show: if p*—>p and a¥—>z and z* e S(p*) then
z € S(p).

First, since #*-p* 20 for all £k, it follows from the continuity of the
scalar product that x-p20, so x € C(p). If x¢ S(p) then there exists
y € C(p) such that y>-z. By continuity of 2 we can find a neighborhood
N(y) such that y' € N(y) implies ' > . In fact, by choosing N(y) suf-
ficiently small and taking a subsequence of the z* if necessary, we may
assume y’'>x* for all k. This means that N(y) n C(p*) is empty for
all k, for if y" € N(y) n C(p*) then 2*Xy" since z* is maximal in C(p*).
It follows that y-p*<0 and y-p=0.

Now for the bundle z, of assumption III, we have x, p*>0 since
xo>0. Define yk=((xy p*)y— (y- p*)2,)[A* where 2*= (x,—y)-p*>0.
Since X is convex, yke X. Also y*-p*=0 so y*e C(p¥). As pk—p,
yp*—>y-p=0, hence y*—y. Thus for k sufficiently large y* e N(y).
This, however, contradicts the fact that N(y)n C(p*) is empty, and the
theorem is proved.

To see why some condition such as IIT is necessary in order to prove
continuity of 8, suppose G, and G, are goods which U is not able to supply.
Let

pr = (nkl’ (l—nkl)’ 0,...,0

where n%; >0, n¥, -0, so p*—>p=(0,1,0, ...,0). Then clearly S(p*) is
constant since C(p*) is independent of k and if 2k = (&%, ..., &, ) e S(p*)
then &%, =0, since £, <0 would mean z*-p*¥<0. On the other hand, if
G, is a good which is desired by U then y= (%, ..., n,) € 8(p) implies
7, <0. Thus, if we take a convergent subsequence of the * the limit
point z=(&,, ..., &,) will have £,=0, so z ¢ S(p) and therefore S is not
continuous.

8. Equilibrium and optimality. We consider a model with com-
modity sets X;, ..., X,,, each of which is ordered by a preference

ordering . A feasible operation x,, ..., z,, of M is called optimal
if there is no other feasible operation y,, ..., y,, of M such that y, X z;
in the ordering of U, for every i=1, ..., m, and y,> x; for at least

one unit U,

We are going to prove that, under certain conditions, any equilibrium
operation of M is optimal. This will in fact be the case when there is no
saving at equilibrium.
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We assume that the ordering of each X, is continuous and convex,
and that the supply function S, of each U, is defined as in the preceding
section. Thus, if

Cip) = {m;| ;€ Xy, z,°p 2 0}
then
Sip) = {x; | x; is maximal in Cyp)}.

For such a model M the following theorem holds.

THEOREM 7. Let p be an equilibrium price vector with the property
that iof x;€ S,(p) then x,; satisfies the budget equality x,-p=0. Then any
equiltbrium operation x,, . .., x,, corresponding to p is optimal.

Proor. Suppose there is an operation y,, ...,y,, of M such that
Y, >, and y, Xz, for all i. Let p be the equilibrium price vector. Then
Py, <0, for if p-y, =0 then y, € Cy(p), contradicting the fact that x,
is maximal in C,(p). Also p-y;<0 for all ¢, for if p-y;>0 then by the
hypothesis y; ¢ S;(p), hence x,>y; since x; is maximal in C;(p), but this
contradicts the assumption on the y;. Letting y=2y,=(n,, ..., 7,) we
have Zip-y;=p-y<0 or Znm;<0. Since a;20 for all j it follows that
7; <0 for at least one j, hence the operation y,, ..., y, is not feasible.
This proves that the equilibrium operation is optimal.

It is easy to give examples to show that an equilibrium need not be
optimal if saving is possible. Thus, consider the case of two individuals
U, and U, and a single good (. Suppose U, has the whole stock of &
and would like to get rid of the amount «. Then §,(p)=8;(1) =« while
S,(p)=8,(1)=0 because of the budget inequality, so the equilibrium
bundles are « and 0. This distribution will not be optimal in case U,
desires some positive amount of the good G.
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