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TRANSFORMATIONS OF STATIONARY
RANDOM SEQUENCES

EDWARD L. KAPLAN

Introduction. This paper is concerned with stationary random
processes whose elements or realizations consist of sequences of points
or events on a line. The theory is simplified by defining the sequences as
infinite in both directions, although in practice only a finite portion of
the sequence can be observed. The Poisson process is the best-known
process of this type, and has applications in which the random events
may be the placing of calls by telephone subscribers, failures of vacuum
tubes, radio-active disintegrations, or many other possibilities. Possibly
the next simplest example is the renewal process, which for example
describes the sequence of failures of electric lamps in a given socket,
when the illumination is provided continuously and the lifetimes of the
lamps are independently distributed with the same (arbitrary) distri-
bution. The same kind of process occurs in the theory of queues. Examples
of still more complicated processes are given by the zeros or maxima of
random Gaussian noise functions; the arrival of scheduled airplanes at
an airport, when they are intended to arrive at uniform intervals of
time; and the events of meteorology, geelogy, biology, etc.

All the above examples involve positions in time. But one may also
be concerned with the spacial positions of objects such as organisms, col-
loidal particles, vehicles, or wavecrests. Suppose now that these objects
are in motion, subject to statistical laws, and that their positions are
observed not continuously but only at selected instants, as by successive
photographic exposures. If the objects do not differ sufficiently to permit
them to be distinguished by their appearance, one is confronted with the
question of how well one can preserve the identities of the objects from
one exposure to another on the basis of the observed positions alone.
This is the motivation for the study of permutations of the points of the
sequence in Sections 3 and 4 below; the subject is considered in much
greater detail in the author’s doctoral dissertation [6].
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Let {w;}, t=..., -2, —1,0, 1,2, ..., be an infinite collection of real-
valued random variables with the following properties:

(1 a) Stationarity: The transformation #;=,,; is measure-preserving;
(1 b) Non-negativity: Pr{u;<0}=0;
(1 ¢) Non-degeneracy: Pr{u,=0, all 1}=0.

In practical applications, the stationarity is likely to be a simplifying
approximation which is valid for a finite period of time, or a finite
number of ;.

In this study the u; are interpreted as the successive interval-lengths
between consecutive points v;_;, v; on a line, hence the conditions (1 b)
and (1 c¢). Thus for >0

n—1
(1d) v, =9+ 3 u and v_,=v— Fu,.
i=1 i=0

The term ‘““‘sequence’ refers primarily to {v;}, but one cannot very well
avoid using it also for {u;}. Except in Section 2, v, is set equal to zero.
Except where the Poisson process is considered, it is nowhere required
in this paper that the u; be mutually independent, although most of the
existing literature is restricted to this case (the renewal process).

In Section 1 the principal result is that if v =0, the expected number of
points v, contained in a finite interval does not exceed that for an interval
twice as long, centered on the origin. A by-product of the proof is the fact
that if x and y are independent random variables having the same

arbitrary distribution, then
Pr{c’sz—ysc+c'} < Pr{—-cSx—y=c}

for all ¢ and ¢’
Section 2 considers the transformation of the ensemble of sequences

{u;} or {v;| v,=0} into an ensemble {v;} stationary with respect to a
continuous-parameter group of transformations, and vice versa. The
correspondence is not perfect; certain ensembles of each of the two types
cannot be so transformed. The transformation involves the introduction
of v, as a random variable in addition to and dependent on the u,;, and
generalizes a theorem proved by J. L. Doob [2] for renewal processes.
The idea is extended further in Theorem 2.C. to construct interesting
ensembles of both types from much simpler ensembles of patterns of
unlabeled points.

In Sections 3 and 4 a second sequence of random variables z; is ad-
joined. For many of the theorems they are only required to be jointly
stationary with the «,; that is, the transformation
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{ts T} = {Usr1, @11}
is measure-preserving. The x; are interpreted as displacements applied
to the v;, so that the given ensemble is mapped into an ensemble of
sequences {V;} with V;=v,+x;. It is shown that the V, have zero prob-
ability of having a cluster point. Thus they can be relabeled as V;’ with
Vi <V It now follows easily that the ensemble {V;'} has the same
general properties that have been assumed for {v;}.

The relabeling just mentioned defines an infinite permutation ¢ =(j),
which is a random 1-1 function from integers to integers. Section 4 is
devoted to the investigation of integer-valued random variables (numbers
of inversions) defined solely in terms of the n’s. The existence and
finiteness of Ex; is found to be sufficient for the finiteness of the number
of inversions associated with each point. The number of inversions may
be of interest for applications, because one of the most obvious ways of
identifying the images of moving objects (in a linear array) in one ex-
posure with the images of the same objects in another exposure is simply
to assume that no inversions (changes of order) have occurred. This is
equivalent to assuming that = (j)=j+n, where the integer z, remains
to be determined.

1. Stationary random sequences. If U denotes a sample sequence
{u;} from the process, an important function of U is

(Le) AU) = lim Y wuyn = lim 3 u_;/n,

n—>o00 1=1 n—>o00 i=1
which is the average distance between consecutive points. By the ergodic
theorem (Hopf [5, p. 49ff.]) and (1b), A(U) is defined almost every-
where if the value +oo is included. It is also part of this theorem that
the expectation EA(U)=Eu,.

THEOREM 1.A. The probability is zero that A(U)=0, and hence, so is
the probability that the sequence {v;} have a cluster point (other than at
infinity).

Proor. For a sequence of intervals u; leading to a cluster point one

would have n
MU)= lm Jufn =0,
n—>o0 =1
since 27 u; would be bounded. Let Z be the set of sequences U for which
AU)=0, and E, the conditional expectation within Z, supposed for the
moment to have positive probability. Then one has E,A(U)=0, but since
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% is an invariant set, E,A(U)=E u, for all . Thus, since u,= 0, all the
u; vanish almost certainly in Z, which must therefore have zero prob-
ability by (1 c).

While the number of points v; contained in a finite interval is thus
almost always finite, the applications of 2.C. below will show that the
expected number of such points may be infinite. Some sufficient con-
ditions for finiteness of the expected number, and related results, will

now be given.

THEOREM 1.B. The expected number of points v; contained in a finite
Jixed interval does not exceed that for an interval twice as long, centered on
vo=0. (The latter interval is to be closed if the first interval is closed ; other-
wise 1t may be open.) Thus the expected number @(v) in (0, v), if finite,
is at most of order v for v large; if in addition E(1/1(U ))>0, it is exactly
of order v.

Proor. Let (¢', ¢c+c’) be the given interval; we may assume ¢>0 and
¢’ > 0, since the expected number in (—c—c¢’, —c¢’) is the same. The proof
depends on the obvious fact that if A4 denotes the set of points from
the sequence v; falling in (¢’, c+c¢’), then all these points fall in (—c, ¢)
whenever the origin of abscissas is shifted to any one of these same
points A. For the sake of definiteness, all intervals will be regarded as
closed.

Let p;, t=...,—2,—-1,0,1,2, ..., denote the number of points
falling in (¢, c+¢’) when the origin is shifted from »,=0 to v;, and let
u® denote the same for (—c¢,c). We have to show that £y, 2 E u,, which

is the same as

v

Elim 3 pfn z Elim 3 uy/n .

i=—1 t=—1

So it suffices to show that

h'm,Z' plfn z lim X' pifn

i=—1 t=—1

v

for almost all sequences.

Now let M(t,, t,) denote the number of different ordered pairs (v, v')
of points of the sequence in (i, t;) such that v'—wv falls in the interval
(¢/, e+¢’), and Mty t,) the number such that v"—wv falls in (—e¢, c).
Pairs for which 2+’ must be included in M(t,, t,), and multiple points
treated as if distinct. Then we have

Moy v)[n S 3 wfn S Moy, c+¢))n.

g=—1
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When 7 — oo, the two extremes approach equality since M(v_,, c+¢')—
—M(v_,, v_;) remains constant (and finite) as soon as v_j—v_,2c+c'.
Hence —n

Lm 3 ufn = lim M(v_,, v_,)/n,

t=~—1
and similarly .
lim 3 u®n = lim My(v_,, v_,)/n.

=1

So it will suffice to show that
Mo(”—m v—l) g M(v—-m ”——1)

for all » and all sequences v;.

The set of point-pairs (v, v') whose (finite) cardinality defines M (v_,,v_,)
can be represented as a set C of distinet positions in an » x n lattice or
matrix, in which the row identifies the first point v and the column the
second point ¢’. Similarly we may define a set C,, symmetric about the
principal diagonal of the matrix, whose cardinality is My(v_,, v_;). Thus
we have to show that the cardinality of C is as great or greater than
that of C.

By the remark made at the start of the proof, the set U, contains the
two sets C' and C'" derived from C by the following rules:

(v,v")eC implies (v,v)eC’ and (v, 0 )eC".
(v',v) and (v, v)eC implies (#',v") and (v"',v")eC’.
(v,?") and (v, v"”)eC implies (¢',?") and (v",v")e (.
For example, let us take n=4, with —v_;=3,5,6,9 for i=1 to 4, and

(¢'se+e)=(2, 3) and (—c, ¢)=(—1, 1). Then the arrays in question take
the forms

3 5 6 9 3 5 6 9
3 0 3 1
5 5 2 2
6 0 x 6 2 1,2
9 0 9 2
0eC,, zeC. leC’, 20",

The arrays C, (zeros) and C(x’s) are non-overlapping because this is
true of the intervals (—1, 1) and (2, 3), but the arrays ¢’ (ones) and

9*
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C" (twos) do overlap in one position. However, this will be immaterial
if we can show that the sum of the cardinalities of C" and C”” equals or
exceeds twice the cardinality of C. To do this, choose any element
h of C. Let the row and column of 2 contain m’ and m'’ elements of C
respectively. Then if this row and column are deleted from C, its car-
dinality is decreased by m’ +m' —1. The cardinalities of ¢’ and C" are
decreased by at least 2(m’—1)+1 and 2(m’' —1)+1 respectively, thus
2(m’+m' — 1) for the sum. By repeating this process, all cardinalities
can be reduced to zero. This proves the first part of the theorem.
For the second part of the theorem we note that

lim »,/n = A(U)  is equivalent to  lim N*(v)/v = 1JAU),

7n—> 00 V>0
where the random variable N*(v) is the number of points falling in the
open interval (0,v). Then ¢(v)=EN*(»), and applying Fatou’s lemma
gives o

lim inf @(v)/v 2 E(1/A(U))
v —> 00
as desired. The condition E(1/4(U))>0 is of course equivalent to having
a positive probability that A(U) be finite.

The bound given by the theorem may actually be attained. As an

example, let the u, have the pattern

e ,0,4,1,4,0,4,1,4, ...,

so that the v; consist of double points at intervals of 9 units, with pairs
of distinet points 1 unit apart, centered in the intervening spaces. Then
whatever point of the sequence is taken as the origin, the closed interval
(4, 5) always contains just two points; the interval (— 1, 1), but no sub-
interval thereof, has the same property. To be sure, if the u; are mutually
independent, the interval (—c, ¢) can obviously be replaced by the closed
interval (0, ¢). (Translate the origin to the first point of the sequence
contained in (¢, c+¢').) Also, if ¢/ >0, one can show that the arrays C”
and O’ cannot be identical, and hence the arrays C and C; cannot have
equal cardinalities, although the ratio of these cardinalities may approach
unity as n — oo.

TraroreM 1.C. If x and y are independent random variables having the
same arbitrary distribution, then
Pr{c'sz—y<c+c’) £ Pr{—csx-y=sc}.

In the course of proving the preceding theorem, this result has in
effect been established for the case in which the common distribution
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consists of discrete probabilities 1/n assigned to » numbers, some of
which may be equal. Distributions of this sort with n —c give arbi-
trarily close approximations to the true probabilities in the general case.

THEOREM 1.D. The expected number of points of the sequence contained
in any finite interval is finite if any one of the following conditions is
satisfied :

(a) the expected number is finite for some interval about the ortgin;

(b) Ev,2< oo, where v,,=u,+uy+...+u,, for some m (a special
case 18 v, =a >0 with probability one).

(¢) w; ts independent of u;, p, Uy i1y - - -, JOr sOme m.

Detailed proofs will be omitted. Condition (a) follows from 1.B.,
condition (b) from the relation

Pri{u,+... +u,<c} £ nPr{u,<c/n},
and (c) from the relation

Pr{u,+...4+u,<c} £ Pr{u;<c, for 15i<n}.

2. Change of parameter. Here the question concerns the continuity
or the discreteness of the parameter of the group of transformations that
are required to be measure-preserving. In case v, is set equal to zero,
only the transformations

T(n): "7i = Viin— U
can be considered, and the parameter is discrete; but by admitting v,
as a random variable satisfying 0 < v, < %, one can admit the trans-
formations _

Te: = vgp—c,
where the parameter c is any real number, and m the least integer such
that v, =c.

The intuitively obvious way to construct the process with continuous
parameter from that with discrete parameter is to use the latter in speci-
fying the relative positions of the points, and then to choose the origin
(or equivalently, the value of v,) at random, with uniform probability,
in an interval whose length approaches infinity. A modification of this
procedure is given in the following theorem, which generalizes Theorem 4
of Doob [2]. The interval-lengths u, associated with the discrete-para-
meter process are replaced by u,* when the parameter is continuous, to
reflect the change in their distributions. The letter I denotes finite sets
of integers (subscripts) that include the integer zero. The common ex-
pectation of the u, is denoted by Fu.



134 EDWARD L. KAPLAN

TuEOREM 2.A. Given the stationary discrete-parameter process {u;}, with
Eu< oo, let the distribution of the variables vy, uy*, u *, ... be determined

by

Pr{0svy<uy*} =1,

Pr{vy<by; us*zay, 1el} = Pr{u;2a;, iel}by/Eu
(bpsay; all ).

Then the new process {v,, u;*} is stationary with respect to the continuous-
parameter group of transformations

T .

el Uy = Vpum—C,
where m s the least integer such that v, Zc, and v,—v, ;=u*.

Proor. In a more suggestive notation, if the variables u;, ¢ € I, have
the distribution dL;(u;), u; being a vector, then the new variables are
to have the distribution

d L(us*) dvg/Eu ,
subject to the condition 0=wv,<uy*. The various distributions obtained
by varying I are obviously mutually consistent and so define a stochastic
process by the theorem first proved by Kolmogoroff. The u;* alone have
the distribution

ug*d Ly(uy*) [ B ,
which differs from that of the ;. The variable v, has the marginal distri-
bution

[1—L(ve)ldvy/Ew ,
where L is the common (cumulative) distribution function of any one
of the u;. The Poisson process gives a convenient illustration of these
facts. Here v, happens to have the same distribution

e HEvdt | By
as every u;* (1 +0) and every w,, while u,* has the distribution
e VEutdt|(Bu)?,

so that Huy*=2Fwu. This familiar ‘““paradox” reflects the fact that when
the origin of abscissas is located at random on the line, it is more likely
to fall in a long interval (u,*) than in a short one. It also reflects the fact
that the behavior of the rest of the process is unaffected when conditioned
by the occurrence of an event (i.e., a point) in an infinitesimal interval
about the origin.
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It remains to demonstrate the stationarity. The transformation 7', is
equivalent to

U = Uyim™
vg—¢ if m=0,

Vo = { Yo+ uU*+u*+ ... +u,*—c if ¢>0, m>0,
Vog—U* —U_*— ... — U, *—¢ i ¢<0, m<O0.

Any set M,, of sequences for which a fixed m applies has its measure
preserved, since by hypothesis a shift in the index 7 (4;* =wu,;,,,*) leaves
unchanged the distribution of the u;, which appears as the factor d L;(u;*),
and the factor dv, is unchanged by the translation of v,. But any measur-
able set M can be expressed as a countable union of sets M, (with m
assuming all integral values) where the M,, are disjoint and have disjoint
images. Hence M has its measure preserved.

Evidently the expected number of points of the continuous-parameter
process falling in a finite interval is equal to the length of the interval
divided by Ewu, when the multiplicities of the points are taken into ac-
count.

A converse of 2.A. is

THEOREM 2.B. Any stationary process with a continuous parameter i
whose elements can be defined as sequences of random variables representing
sequences of points of finite expected density on the t-axis can be obtained
Jrom a stationary process with discrete parameter by the construction of
2.A.

Proor. By the (expected) density of the points we mean the ratio
of the expected number of points in an interval to the length of the
interval; it is independent of the interval for a stationary continuous-
parameter process. The finiteness of this density implies that sequences
having cluster points are of zero probability, and so the given continuous-
parameter process can be represented by the collection {v,, u;*} of random
variables used in 2.A.

Consider a set defined by

0 29y <vy S, Uy < u* = uy’

and similar intervals for a finite number of other u;*. If v, < u, the
rectangular character of the set is unaffected by the restriction v, < uy*.
Then if ¢ is such that 0<v, +¢ and ¥, +c=wu,’, the transformation
t={—c carries the given set into another rectangle having the same
limits on the %,* but with ¢’ +¢<7,<v,” +¢c. These sets have the same
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measure by hypothesis, which can be true in general only if the variables
have distributions of the form

gdl*(u*)dvy (05 vy <ug®)

as in 2,A. The expected density of stacks of points (points counted
without regard for their multiplicities) is

lim Pr{v,<e}/e,

£—>0
which is the integral of the expression ¢ d.L;*(u;*) over the region
ug* > 0, all the other u;* being unrestricted. The hypothesis implies that
this density is positive and finite, and so we may make the integral of
dL*(u;) over uy>0 equal unity and let ¢ equal the stack density.

In case there is indeed a positive probability of having multiple points
in the sequence, the distributions L* just obtained are not quite those
desired, since they make Pr{u,=0}=0 and hence are not stationary in
the discrete parameter. Before making the necessary adjustments, we
first show that these distributions are stationary in a restricted sense,
namely, when attention is confined to sets and transformations such that
all the variables playing the role of u, are required to be positive. Con-
gider a set 4 defined by

’ r ’ ’
0<uy <ug=wuy’, Uy =Upg=...=U, 1=0, O<u,’ <u,zw,’,

and arbitrary inequalities on a finite number of other «; (n21). Let
denote the smaller of u," and u,’. Define a corresponding set A* in the
space of the continuous-parameter process by replacing the u; by wu*
in the definition of 4 and adding the condition 0 £ v, <#. Then the trans-
formation {=¢—# applied to A* is equivalent to

U = Uyp*
Dy = Vo+u,*—7 .

Dividing out the factor n/Eu (relating to v,) in the distribution, we see
that the transformation 4;=wu,,, leaves the measure of 4 unchanged.
If one were content with this incomplete stationarity in the discrete
parameter, one could assign probabilities arbitrarily within the region
u, =0, since the factor dv, and the condition 0 < v, < uy* reduce the prob-
ability of this region to zero in the continuous-parameter process. How-
ever, the requirement of complete stationarity serves to determine these
probabilities uniquely in terms of those (the L*) conditioned by wu,> 0.
Suppose for the moment that p, =Pr{u,=0} is known. Let R be a
finite-dimensional rectangle, and let 7', be the transformation
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T, (w)—~(2;) with 4, = u;,-

For any n such that u, >0 throughout R, the measure of 7', R must be
1 —p, times the measure assigned to it by the L*, which has been shown
to be independent of n. For other values of n, the measure of 7, R is
hereby defined to have this same value. If there is no »n such that », >0
throughout R, then R may be partitioned into a finite union of rectangles
for each of which such an = exists, plus a set of the form u,=0 for ¢ € I,
For simplicity, let the class I, be enlarged if necessary so that it is com-
posed of m consecutive integers. Then if

Pm = Pr{u;=0, i=1, ..., m},
one must have

Pm = Poot O Pr{u_y>0; ;=0 for i=—j+1 to m}.
j=0

The stationarity of the original continuous-parameter process requires
that p_ = Pr{u,=0 for all 7} be zero, in agreement with (1 ¢). The other
probabilities have already been defined, so that one has

(2 a) P = (1—p;) 3 Pr{u;=0 for i=1 to j | u,>0}.
j=m

Putting m=0 or 1 (and py=1) in (2 a) determines p,:
(2b) 1/(1—p,) =14+ Pr{u;=0]uy>0} + Pr{u;=uy,=0]uy,>0} +....

It is evidently necessary that this series converge, so that p,+1. This
it does because its product with the positive constant ¢ (the stack density)
gives the expected density of points (taking their multiplicities into
account), which is finite by hypothesis. Thus the factor 1/E« of 2.A.
equals o/(1 —p,). It is easily seen that the new distributions defined
above are mutually consistent as well as stationary. This completes the
proof of 2.B.

In 2.A. a stationary process with continuous parameter was obtained,
roughly speaking, by taking a space of sequences of points whose relative
positions only were specified, and locating the origin of abscissas at ran-
dom with respect to the points of each sequence. The identity of w,
or any other u; was supposed to be known in advance. If this is not true,
an analogous procedure can be applied at an earlier stage. That is, sup-
pose one is given merely a space of sequences of numbers, such as

e 1,2, 0,1, 7,0,1, 7,0, ...,

without any information as to which number of the sequence is to be
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designated as u,. Then by assigning the index zero with equal prob-
abilities to each of N consecutive numbers in the sequence, and letting
N — o, one can obtain a stationary process with discrete parameter,
provided the original space of unlabeled sequences has a suitable prob-
ability measure. The latter may be far simpler than any other descrip-
tion of the new process, hence the practical importance of the result.
The following applies this idea and gives a method for specifying the
original sequences.

TarOREM 2.C. Let a stationary process of sequences
() j=...,-1,01,2 ...,

of positive integers be given such that Eu;=pu is finite. Let the arbitrary
probability distributions H (w,, ..., w,) be defined for all positive integers
w that occur with positive probability in the sequences {u;}. The H, need
not be mutually consistent. Then the space of sequences {u;} =

1) (-1 -1 ;
cenw P w D w, PO w,O, e, ©, w, P, w, P, .. Hw,, P,
ts stationary in the index i, provided that for given values of the u;, any set
of variables . . .

wd = (“hm, s, w,,,.‘”)

is distributed according to H, independently of all other such sets u®
with k+j, and the index zero (identifying uy) is located at random as de-
scribed below. (The resulting distributions are written down explicitly in
(2 ¢) below.)

In the present applications the wy, ..., w, will be non-negative, but
this is not necessary for the theorem.

Proor or TueEoREM 2.C. Asin 2.A., let I be a variable whose range is
all the finite sets of integers that include zero. The new process is defined
by identifying u, with the number w,,®, where m is a new random positive
integer. If p;(u;), where u; is a vector, is the (discrete) probability in the
original process of the simultaneous realization of the values u; with
j €1, then their joint probability with m in the new process is defined
to be p;(u;)/i for each integer m such that 1 <m < u,, and zero otherwise.
As with the u; in 2.A., this involves a change in the probability measure
of the w;, which now have the marginal .probability wu,p;(u;)/F, while

that of m is 0
2 P(to)[fi -

bo=m
The distribution of the w’s or u; as conditioned by {m, u,} is given by
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the H,, with the understanding that any set of variables w,?, ..., w,®
is independent of all other w,® with k+j. This defines the distribution
function for any finite selection of variables of the form
{m, p;, uy; r<i<s}.
The distribution function of u, to u, inclusive thus has the form

81+l o0 o0

(20) Ls—1‘+1(ur’ Uptys =« > us) = ﬁ'-lz 2 2 qu Hg+,u1' H/zz v qu’+a

W) g=1 ¢=0 o=0

where , ,
Pq = pq(@'*':“l s Mas ooy Mg—15 Hq +6) ’
He+141’ = H@+u1’( OOy wvey OO, Upy ot ey ur+.u1'—1) ’
Hllz = Hﬂz(urﬂu” ) uf+#1’+/42—1) )
Hﬂq,w = Hﬂq%(us_#q,ﬂ, ceey Uy 00, ..., OO),

and where p and ¢ are the numbers of symbols « occurring as argu-
ments of the #’s at the beginning and the end, respectively, and p,(. . .)
is the probability that ¢ consecutive u; in the original process have the
values specified. The outer summation is taken over all the ordered
partitions of s —r+1 into a sum

pa et gty

of ¢ positive integers; ‘“‘ordered” means for example that 1+2 and 2+1
are regarded as distinet partitions of 3. If g=1, then the typical term is

At plo+s—r+140) Hypy pigi,(00, o0y 00, Uy ooy Uy, 00, ..., 00).

It is obvious that, as implied by the notation, the function L,_,,,
does not depend on r and s individually, but only on their difference.
These distributions will therefore be mutually consistent and stationary if

Ls~r+1( 00, Upigy v ooy Ug) = Lig (Upyy, ooy Ug) = Ly piy(Upyyy ooy % ).

The equality between the first two members is typical. Putting u,= oo
in L,_,,, evidently converts all the terms of L,_,,, having u,"=2 into
those terms of L,_, having u,’ 21, ¢ 2 1, and the same values of ¢ + u," and
the other variables, only the ¢ =1 being a significant restriction. Those
terms of L,_,,, having u,’=1 drop the unit factor H,,
when u,= oo, and pass into the remaining terms of L,_,, which have

0=0, a value g equal to the old ¢ diminished by one, and values of

(o0, ..., )

Q+,u1',,u2, ey qu_l, l“‘q,+0'
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equal to the old values of

Hos gy + - o5 Pg-15 Hig + 05

respectively. This is consistent in view of the equality

(s
2 Polet ] s e gy g +0) = Pyaltay <o Mg Mg +0)
=

The last step in the process, showing that L,(o)=1, gives

F

o0 1 o0
2 mle+o+1) =E’g:"’1’1(k) =1.

o=0

=~
I
°

[

This completes the proof of 2.C.

Theorem 2.C. was formulated in the course of showing that the ex-
pected number of points falling in a finite interval may be infinite when
the discrete-parameter formulation is employed, although this will cease
to be so if the process is converted by 2.A. to one having a continuous
parameter.

To do this one assumes that the variance of the u; in the original
measure i8 infinite, so that in the new measure the mean of g, (which
acquires the marginal probability u,p(u,)/i) is infinite. The p; may be
assumed to be originally mutually independent. The simplest set of
H, are the degenerate distributions which make w,=1 and w;=0 (¢>1)
with probability one. The sequences are then obtained by putting u,
coincident points at the place of abscissa 4, for ¢=..., —1,0,1,2, ....
Since a large value of u; casts a larger net and is more likely to capture
the reference index zero than are small values, the expected number of
points at v=1¢=0 is infinite, although it is finite (=) for any other value
of ¢, and (U)=1/a.

The restriction in 2.C. that Ly, be finite is necessary for the theorem
but not for the construction of interesting examples. If Fu,;= oo and u;
coincident points are placed at abscissa j, j=..., —1,0,1,2, ..., a con-
tinuous-parameter process with infinite point-density can be constructed
by a random placement of the origin, but no corresponding stationary
discrete-parameter process exists, because A(U)=0. If Eu;= c and u;
coincident points are placed at 0 for j=0, at

for j>0
Zl“i J

and at



TRANSFORMATIONS OF STATIONARY RANDOM SEQUENCES 141

the point-density may be said to be finite, but neither the discrete nor
the continuous-parameter stationary process can be constructed; if so,
one could use the ergodic theorem to show (falsely) that in the discrete
case Pr{u;=0}=1, and in the continuous case, that the density of points
or stacks was zero. In all these examples, the coincidence of the u;
points is easily seen to be inessential.

3. Permutation of the points of the sequence. We now suppose
that each point v; of the typical sample sequence is subjected to a random
displacement x;, so that the new abscissa V, is v;+;. The minimum
assumption is that the stationarity condition (1 a) continue to hold for
the combined process {u;, x;}, so that the transformation

(i ) = (Wgin Ziga)

is measure-preserving. The common distribution function of the z; is
denoted by F(z).

Although v, < v, for all 4, this is not in general true for the V,, hence
the term ‘‘permuted” sequences. However, if the ¥, have no (finite)
cluster points, they may be renumbered and denoted by V), so that
V; £ V;..'. The first results of this section are that the space of sequences
{u;}={V; — V;_,'} exists and has the same properties (1 a—c) as the space
of the {u,;} originally given.

TaEOREM 3.A. The probability is zero that the permuted sequence have
a cluster point.

Proor. By the stationarity, the probability that the permuted
sequence have a cluster point in the half-open interval (v,, v,,,) is inde-
pendent of n. (As » varies from — co to oo, all possible cluster points
are accounted for.) If this probability was positive, the expected number
of points displaced into such an interval would be infinite. But this
expected number is w .

2 Pr{v, sv+a<vyy,},

t=—00
which by stationarity is
oo
) 2 Pr{v, S@m<vpd =1,
t=—00

since v,=0 and the events v, ; S¥,<v,,;_; are mutually exclusive and
exhaustive. This completes the proof.
The following partial proof of the above theorem, valid only when
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Ezx; exists (and is finite), may help to show its significance. Consider the
stationary variables _

Uy = Ui+ Ti—Ty g,
which are the distances after displacement between points which were
consecutive in the original sequence. Evidently E#;=FEu,> 0, the value
+ oo being included. Then by the ergodic theorem,

which is incompatible with the existence of a (finite) cluster point.
An immediate consequence of 3.A. is

THEOREM 3.B. The set of permuted sequences is again a stationary
process, satisfying (1 a—c).

Proor. Let the permuted sequence be denoted by
EVY VLSSV sV sV ...,

which is possible and satisfies (1 b—c) by 3.A., and let u;,/=V;/—V,_,
(Vo' =Vo=2,). It remains to show that the transformation w,’ —u,,," is
measure-preserving. This it is by the argument used in 2.A.: It is
equivalent to a combination of the measure-preserving transformations
U; —> Uy, Where m is such that if V' is obtained by displacing v,, then
V., is obtained by displacing v,,.

It is easily seen that in general the independence of the x; does not
imply that the reverse displacements x;' (the —z, taken in the order of
the V') are either mutually independent or independent of the V,,"—V/,
although they are stationary by the same argument as above. These
conclusions do hold, however, when the original sequences are Poisson,
by the following theorems.

THEOREM 3.C. The space of permuted sequences obtained from a Poisson
process by subjecting each point to a displacement distributed independently
of all else and having a common distribution F(x), is again a Poisson process.

TrEOREM 3.D. If the transformation {v;} —{V,'} of 3.C. is reversed,
the displacements (taken in their nmew order) are likewise independent of
one another and of the sequence {V,;}; their distribution is of course
1—-F(—2).

The proof of 3.C. is given in Doob [3, pp. 404-407]. It is easily modified
to give 3.D. as well, by classifying the points not only according to the
interval I, into which they are displaced (by the forward transformation),
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but also according to the interval X, in which the values of their dis-
placements fall (¢ and j here have new uses). Then in place of F(I;—¢)
one has F[(I;—¢)n X;] with

{Fra,—on x4 = 6-apFxy),

—00

where I; and X, are the intervals (a;, b;) and (c; d;), and F(X,)=
F(d;)— F(c;). The points of {V;'} which have undergone displacements
xz € X, are found to constitute a Poisson process of density F(X,) times
the density of the v;, and independent of all other such processes cor-
responding to intervals X, that are disjoint with X,.

In the notation introduced at the start of this section, 3.D. states the
independence of the X" and the sequence {V,’}, which is true reciprocity ;
obviously the ; and {V,;}= {v;+z;} are not independent. In the following
corollaries, the displacements are assumed to be independent as above.

CoroLLARY 3.D’. Given a Poisson sequence and a single permutation
thereof, one cannot ascertain which of the two sequences is the original except
perhaps by making use of the sense of the displacements. (The latter fails
if F(x) is symmetric about zero).

CororLrLarRY 3.D”. Two permuted Poisson sequences arising from the
same original sequence are related as an original and one permuted sequence
such that the displacements have the symmetrical distribution

G(z) = F(@)[l — F(—2)] = SF(x+t) aF(i).

—o0

4. The number of inversions. Some simple combinatorial ideas
will now be introduced in connection with the permutations defined in
the preceding section. Let the displaced points V;=v,+x; be considered
in the order in which they occur on the line, from left to right. (To
avoid ambiguities, it will be agreed that when two or more points coincide
after displacement, they shall be regarded as having the same ordinal
relations as before displacement; i.e. there is no inversion among them.)
In general the subscripts ¢ will then not occur in their natural order,
and we may write ¢ =z (j), where n(0) equals some arbitrary integer A
which may or may not depend on the sequence considered, and 7 (j)
denotes the subsecript ¢ of the j-th point ¥V, to the right of 7, (if j>0)
or the (—j)-th point to the left of V;, (if j<0). Thus one may write

V/=V,» in the notation of the preceding section. The choice of &
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is essentially a matter of notation. The simplest choice A=0 will be
adopted, although a different determination is suggested in connection
with equation (4a) and theorem 4.F. below. The present section is
concerned only with the properties of the random function 7 (j).

In terms of x(j), other integer-valued functions may be defined:
k,(j,) denotes the number of integers j such that j >3, but = (j) <7 (j,).
Thus k., (j,) also denotes the number of points (called right crossovers)
which were to the left of v; =, in the original sequence, but after
displacement found themselves to the right of the corresponding point
Vi, =v;,+%;, Similarly &_(j,) denotes the number of left crossovers, or
values of j such that j <j, but =n(j) >=(j,). Finally, K(j) may be defined
as the number of inversions that straddle a cut between the points
Vaip=V; and V;,’; more precisely, it is the number of different pairs
of integers j;, j, such that j; <7, j + 1 £ j,, but 7(5,) > #(j;). Of the integer-
valued variables used in this section, k,(j), k_(j), and K(j) alone are
necessarily non-negative.

The total number of inversions in which the point V, =V, is in-
volved is then &, (j)+ k_(j); but the difference k(j)=£%_(j)—k_(j) of these
functions seems to be of greater interest. (In this paragraph it is assumed
that t,(4) and £_(j) (and hence K(j), as shown in 4.A. below) are finite-
valued.) For example, one can show

(4a) a(j) = j+k(j)—m,

where m is an integer (possibly zero or negative) that depends on the
permutation but not on the index j. Evidently m =k(0) —7(0)=k&(0) -4,
so that the choice A =Fk(0) would eliminate the constant m from the
equation. Also one has

Jo
(4b) k(o) = K(jo) — K(jo—1), or  K(jy) = const. + é: k(n),

since moving the “cut” from left to right across the point V,’ causes
k_(jo) inversions (involving V' and ¥V, with j <j,) no longer to straddle
the cut, while k,(j,) inversions (involving V' and V,” with j > j,) now
straddle the cut which did not straddle it before. These relations are
illustrated by the example at the end of the paper, in which m= —2.

The assumed stationarity has not been used thus far in this section,
but it is required hereafter. Then any one of the variables k(j), such as
k(0), has the same properties as any other, and similarly for the k,(j),
k_(j), and K(j).

THEOREM 4.A. The variables k. (j) and k_(j) have equal means (+ oo
included). Thus Ek(j)=0 or is undefined (and not + o or — ).
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Proor. If the k(j) are finite-valued,
sup 7 (4) and inf =(j)
J éjo J Sl
are finite. K(j,) cannot exceed the square of half the difference between
these two bounds, so it is finite. By (4 b) and the ergodic theorem,
a non-zero #k(j) would imply
lim K(j) = — o0 or lim K(j) = — o0
Jj—>o0 J—>—00
It remains to reduce to absurdity the assumption that k_(j), say, is
infinite with positive probability, while Ek,(j) is finite. Let &k, (j; m,n)
be defined like % (j), but with consideration limited to the finite portion
a(m), w(m+1), ..., n(n) of the permutation. Then

2 k—(j; _n’n) 22 k+(]; "'n7n)7
j=—n j=-n

since each member gives the total number of inversions among the 2n + 1
points considered. Since k. (j; —n,n)=k,(j) and Kk, (j) is finite,

1 n
lim sup o 2 ki (j; —nm) < oo

n —> oo J=—n

The desired contradiction will be obtained by showing that

n
lim —1— S k_(j; —nm) = o0
n—>oo “Nj=—n
when k_(j)= oo.
Let A be an arbitrary (large) constant, and define x, (j) as unity when
k_(j;j—N,j)= A and zero otherwise. Then the {y,(j)} (with fixed N)
are stationary sequences,

1 7
lim —Z{’XNU) =f()
Jj=

n—>oo N

exists with probability one, and

lim yn(j) =1  forevery j.

N-—>o0

Also Ef(N)=Exy(j), and letting N — co shows that ¥ lim f(N)=1 and
hence lim f(N)=1. Thus for almost every sequence or permutation,
there exist an n, and an N, such that

1 n
~ X an(j) >34 whenever n>n, and N>N,.
N j=1

Math. Scand. 3. 10
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This implies that
1

> D'k_(j; —n,m) > 1A  whenever n > max (ng, N).
2y

THEOREM 4.B. Any variable k_(j,) ts zero with positive probability, or
else infinite with unit probability; and similarly for k., (j,).

Proor. If Pr{k_(j,)>0}=1, then there is also unit probability that
k_(j)>0 for all j. Thus any point = (j,) has at least one z(j;)>7x(j,)
with j; <j,, while 7z (j;) has at least one = (j,) > = (j,) with j, <j,, and so on.
All these 7(j,) (y>0) are left crossovers with respect to z(j,), so that
k_(jo) = oo.

THEOREM 4.C. The variables k_(j) are almost always finite if
0
S z dF(x)

—0

converges, and the k, (j) are finite if

x dF(x)

e 33

converges.

Proor. The variable k_(0) is representative. By writing z; =2+ —z,~,
where z,* 2 0 and at least one of z;*, #;~ is zero for every 7, the displace-
ments may be applied in two stages, first —z,~ and then z,*. It is easily
shown that the final £_(0) cannot exceed the sum of those at the two
stages. The k_(0) resulting from the —x;~ is finite by a proof exactly
like the second (partial) proof of 3.A., since Hx;~ exists; and by 3.B.
one has again a space of stationary sequences. The k_(0) resulting from
the z;+ will be finite if x,* < v;+ 2, * for all but a finite number of positive
integers %, with probability one. But by the ergodic theorem the state-
ment is true for z,* <v;, and so a fortiori for x,*<v;+#,;*, since z;+= 0.

A partial converse is given by

THEOREM 4.D. The variables k_(j) are almost always infinite if
0
Sx dF(z)

—c0

diverges, and the k. (j) are tnfinite if
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§x dF(z)

diverges, provided that A(U) is almost always finite and each x; is independent
of all else.

Proor. By hypothesis, for any >0, there exists a ¢ such that
Pr{iq(U)<e} > 1-¢,

and hence
lim Pr{v;<ic, all iZN} 2 1-¢.
N>

Hence with probability at least 1—¢,

(o]
1

. had . 1
im D' F(—v;+2) 2 lim — S F(—v+z)dv.
N—>oo =N N—so C

N+De

The latter is infinite since {° xdF(x) diverges, so

ﬁ[l—F(—vi+x)] = 0;
i=N

since ¢ is arbitrary, this holds with probability one. The expectation of
this vanishing expression is the probability that all left crossovers
(k_(0) in number) are confined to the first N —1 points originally to the
right of v,=0.

The case in which Ex; does not exist but all x; are equal for any one
sequence is a counterexample to dropping the independence of the ;.

THEOREM 4.E. If each x; is independent of all else, then for any fixed
realization of {v;} with v, and —v_, - oo monotonely as n — oo, the prob-
ability that k_(0) is finite is either zero or ome, and similarly for k.(0).
If both k_(0) and k,(0) are finite, then they vanish simultaneously with
positive probability.

Proor. The probability that £_(0) is finite is

lim JJ[1-F(-v;+2)],
N-—>o0 1=N
where z is the displacement applied to the point v,=0, and 1 — F(—v,+x)
is the probability that the point v; is not displaced to the left of x. Evi-
dently the limit is either 0 or 1 independently of z. Now if both k_(0)
and %, (0) are finite one has

lim ﬁF(]v_in) [1-F(—v,+x)] =1.

N-—>o00 t=N

10*
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It follows that
(4¢) Il Fllo|+2)[1 - F(—v,+2)] > 0,
i=1

since an individual factor can vanish only on a set of measure zero.
(The remark in the parenthesis at the beginning of this section brings
ambiguous cases into conformity with the statement.) (4 c¢) is the prob-
ability that £_(0) and & ,(0) vanish simultaneously.

THEOREM 4.F. If each x; is independent of all else and the variables
k_(j) and k. (j) are almost always finite, then the infinite permutation is
almost certainly expressible as the product of a translation j =3 +m together
with permutations involving finite disjoint sets of consecutive integers (the
indices of the points).

Proor. It follows from 4.E. and the mutual independence of the z,
that for almost every permuted sequence, there is an infinite number of
values of j such that &, (j)=%k_(5)=0. In each such case one evidently
has also K(j—1)=K (j)=0. Now the translation is used, if it is needed,
to eliminate the constant m in equation (4 a). It then remains to show
that if j, and j, are two integers such that j; <j, and K (j,)=K (j,) =0,
then the integers 2+ 1), WG +2), - - 7y

are a permutation of . . .
P JitLgi+2, .. 0.

By their construction, they must be a permutation of
Jith+1, .., 0+h,

where % is to be determined. Let = (j,)=j,+/ be the greatest of these
integers. Then it has j, —j, smaller integers on its right, and no larger
integers on its left. Thus k(j,)=js—Jjo, and substitution in (4 a) with
m=0 gives h=0 as desired. This completes the proof.

If one only requires that the x; be independent of one another (for
every fixed sequence {u,}), or that the {x;} be independent of the {u},
one can easily arrange to obtain always a permutation such as

j=... 0 1, 2 3 4 5 6 7, 8 9,
a()=... 6 1, 2 9 4 5 12, 7, 8 15
ke (j) = 0 4 0 0 4 0 0 4
k_(j) = 2 0 2 2 0 2 2 0
k(j) = -2 4 -2 -2 4 -2 -2 4
K(j) = 2 6 4 2 6 4 2 8

for which k(j) and K (j) never vanish.
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