ON A THEOREM OF STICKELBERGER

KÅRE DALEN

- 1. This paper contains a wholly algebraic proof of a theorem of Stickelberger which is a little more general than that given by Carlitz [1]. The notations are as in [2, p. 263] which also contains a proof of the general Hensel lemma. This lemma is fundamental in the following discussion.
- 2. Let Ω be a perfect field with respect to the valuation w. The elements a with $w(a) \ge 0$ constitute an integral domain I, and the elements b with w(b) > 0 constitute a prime ideal \mathfrak{P} of I. Then $P = I/\mathfrak{P}$ is a field. We suppose P to be isomorphic with either the Galois field $GF(p^n)$ or the field of real numbers. The field P then admits only algebraic extensions which are normal and cyclic, and we have the theorem:

If f(x) and g(x) are irreducible polynomials in P[x] and the degree of f(x) is a divisor of the degree of g(x), then the extension $P(\vartheta)$ defined by g(x) contains all the roots of f(x).

3. We shall now study a special extension of Ω . This extension is performed by adjoining the roots of a polynomial

$$f(x) = x^n + a_1 x^{n-1} + \ldots + a_n$$

in I[x] with discriminant $D \equiv 0$ (\mathfrak{P}). Let the factorization of f(x) in the field P[x] mentioned in section 2 be

$$f(x) = f_1(x) f_2(x) \dots f_s(x)$$

where the degree of $f_i(x)$ is r_i . By the Hensel lemma we obtain:

The factorization of f(x) in $\Omega[x]$ is of the same type, that is, the degrees of the irreducible factors of f(x) in $\Omega[x]$ are r_1, r_2, \ldots, r_s .

Now, let
$$r(x) = x^m + b_1 x^{m-1} + \ldots + b_m$$

be an irreducible polynomial in P[x] of degree l.c.m. of the r_i . Clearly r(x), being an element of $\Omega[x]$, is irreducible in $\Omega[x]$. We shall show that r(x) is a resolvent of f(x). By adjoining a root ϑ of r(x) to Ω we

Received January 5, 1955.

obtain $\Omega_1 = \Omega(\vartheta)$, which is perfect with respect to the uniquely determined continuation w_1 of w. The valuation w_1 defines an I_1 , \mathfrak{P}_1 and $P_1 = I_1/\mathfrak{P}_1$. Evidently $w_1(\vartheta) \ge 0$ and thus r(x), as a polynomial of P[x], has a root in P_1 . By section 2 we then obtain that all the roots of $f(x) \in P[x]$ are in P_1 . From the Hensel lemma it follows that f(x) factorizes with linear factors in $\Omega_1[x]$. Thus we have

THEOREM 1. Let
$$f(x) = x^n + a_1 x^{n-1} + \ldots + a_n$$

be a polynomial of I[x] with discriminant $D \equiv 0$ (\mathfrak{P}) and r_1, r_2, \ldots, r_s the degrees of the irreducible factors of f(x) in P[x]. The Galois group G of f(x) is then generated by

$$\delta$$
: $(1, 2, \ldots)(\ldots)\ldots(\ldots)$

where the lengths of the cycles are r_1, r_2, \ldots, r_s .

4. We shall now discuss the Stickelberger theorem. Let

$$H = \prod_{i>j} (\alpha_i - \alpha_j)$$

where the α_i are the different roots of the polynomial f(x) in a suitable Ω_1 . Clearly $H \in \Omega$ if and only if the number

$$(r_1-1)+(r_2-1)+\ldots+(r_s-1)=n-s$$

of inversions of δ is even. Since $H^2 = D$ we obtain

Theorem 2. Let
$$f(x) = x^n + a_1 x^{n-1} + \ldots + a_n$$

be a polynomial of I[x] with discriminant $D \equiv 0$ (\mathfrak{P}), and let s be the number of irreducible factors of f(x) in P[x]. Then we have

$$(D/\Omega) = (-1)^{n-s},$$

where $(D/\Omega) = +1$ or -1 according to whether $x^2 - D$ is reducible or not in $\Omega[x]$.

5. Special cases. Let Ω be the perfect p-adic field. P is then a GF(p) and we obtain theorems A and B of Carlitz [1]. Let Ω be the field of formal power series with real coefficients. P is then the field of real numbers. Since $(D/\Omega) = 1$ is equivalent to D > 0, we obtain the following corollary.

COROLLARY. Let f(x) be a polynomial of degree n with real coefficients, discriminant $D \neq 0$ and k real roots. Then

$$(-1)^{\frac{1}{2}(n-k)} D > 0$$
.

We may also let Ω be the perfect \mathfrak{p} -adic field of an algebraic number field K and obtain similar theorems.

REFERENCES

- 1. L. Carlitz, A theorem of Stickelberger, Math. Scand. 1 (1953), 82-84.
- B. L. van der Waerden, Moderne Algebra I, Dritte Auflage, Berlin·Göttingen·Heidelberg, 1950.

BRYN, OSLO, NORWAY