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ESTIMATES OF THE FRIEDRICHS-LEWY TYPE
FOR A HYPERBOLIC EQUATION
WITH THREE CHARACTERISTICS

VIDAR THOMEE

The aim of this paper is to prove the uniqueness of a solution of a
boundary value problem of mixed type for a linear hyperbolic differen-
tial equation with three characteristics and to estimate its solution by
means of the boundary values. Problems involving more than two
characteristics occur in gas dynamics, and uniqueness theorems of the
kind considered below are stated without proofs in [1] (see e.g. p. 86).
The method used in this paper is due to Friedrichs and Lewy [2], and
has recently been used in the theory of linear hyperbolic equations of
order greater than two by Leray [5] and Garding [3]. For the sake of
simplicity we have only considered the case when the differential oper-
ator has real coefficients and its principal part constant coefficients.
Certain restrictions are also made concerning the boundary of the region
considered. These specializations, however, do not seem to be imposed
by the problem, but are made in order to avoid difficulties.

I wish to express my gratitude to my teacher, professor Lars Garding,
who suggested the subject of this paper.

1. Let V be a closed region in the plane whose boundary 8 is piecewise
smooth and let L be a real hyperbolic differential operator of order three
with constant principal part and continuous coefficients. In a suitable
coordinate system, a suitable real multiple of such an operator has the
form

2 2
(1) L = (Dy— 03 D) (Dy— 669 Dy) (D — 3. Dy) +.k2710'ik D;Dy + 3'b;D; + ¢
t, k= =1

where D,;=0[0x,; the constants «;, &, and «g are real and o, <xy,<oay
and the coefficients a,;,, b, and ¢ are real-valued continuous functions in
V. The characteristic form associated with (1),
() A = A¢) = (ba— &) (Ea—x381) (S —361) s
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divides the &-space (the dual space) into four parts X, (:=0, 1, 2, 3),
where 2, is the set of points &=(&;, £&,) making exactly ¢ factors of (2)
<0 and the others =0. Since every factor &, —«, &, is negative on the
negative £,-axis, the division is seen to be the one represented in fig. 1.
For practical reasons we also distinguish between the parts of 2; and X,
which correspond to positive and negative values of £, and denote these
parts by 2,7, 2", 2, and X,*, respectively.

A¢,
z, T3
ey EFO "
”y%)
21 - 51
Ez *
Sraé; 0
2
§ra b0
23
Fig. 1. Fig. 2.

This division of the dual space now gives rise to a division of § into
parts S, so that a point of § belongs to §; if and only if the exterior
normal » of S in this point belongs to Z; (v=(vy, v,); |v|= (12 +72)t=1).
The notations S;~, 8;, §,” and S, correspond in an obvious way to
2o, 2y, 2y and Xy (see fig. 2).

Certain gas-dynamical considerations (see e.g. [1]) make it probable
that, roughly speaking, if ¢ is a given function in ¥V and ¢,; (0=5k<7)
are given functions on §; (i=1, 2, 3), the differential equation

(3) Lu =9

will have a unique solution % such that d*u/dv*=¢,, on S, when k<
(¢=1, 2, 3). We shall prove the uniqueness part of this statement under
the following restrictions on the boundary S of V,

(a) inf |2,] > O k=1,2,3)
S1USe

where Ap=vy—o,v, and
(b) 8;tuS,* has a positive distance to S;-uUS,~.

The first of these conditions means that on §; and §,;, the normal must
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avoid the shaded areas in fig. 1 in the neighbourhoods of the lines
Ey— 0 6,=0 (k=1, 2, 3). Observe that this implies that a passage from
one part S; of § to another is accompanied by a jump in the normal
derivative. The condition (b) means that any part of §,-US,~ is sepa-
rated from any part of §;*uS,* by a part of §, or §,.

A solution  of (3) is to be understood here as a real function whose
derivatives of order <38 are continuous in V.

THEOREM 1. Let V be a region whose boundary S is piecewtise smooth
and satisfies (a) and (b). Then a solution of the equation

(4) Lu =0
with the boundary conditions d*ufdvé=0 for k<i on S; (1=0,1, 2, 3)

vanishes identically in V.

In the proof we shall introduce a new differential operator
(5) M = (Dy—p,Dy)(Dy—B,D,)
where g, and S, are continuously differentiable functions satisfying
% < Py << fy<og

at each point of V. They will be subject to additional conditions later.
First we shall prescribe their values on the different parts of the boundary
S in a suitable way, and then choose 8, and §, as continuously differenti-
able continuations of these values to the whole of V.

The notations

L, =Dy~ D, (k=1,23)
and
(6) L,=]J] Dy—x;Dy) (3, k =1,2,3)
itk

will be of constant use.

We first prove the following

Lemma. Suppose that L only contains the principal part
(Dy— oty Dy) (Dy— 06 D1) (Dy — x3 Dy)

and that the B, of (5) are constanis so that x,<f,<cxy<fy<ag. Then
we have the identity

3
(7) 2Lu Mu = ', Ay (Lyu)?
=1

where A, are positive constants.
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Proor. The relation

3
(8) Mu = 3 A, L
k=1

is evidently valid if the constants 4, satisfy the system
A+ A4, +4; =1,
Ay (g +ag) + Ag(og+oq) + Ag (o +as) = By + Bs,
Ayoxgog + Agagon + Agoyoy = B1fs,

which has the unique solution

Ay = (Br—o1) (Ba—01) [ (g — 1) (x5 — oxy),,
(9) Ay = (By— o) (Ba— ag) [ (21— ox3) (35— 5),

Ay = (Br—05) (Ba—r5) [ (001 — x3) (g — cx3) .

Here A4,, are seen to be positive if «; <f; <&y < B <x3. Now multiplying
(8) by 2Lu, we get

3 3 3
2Lu Mu = 3 24, Liw Lu = 3 24; Liwl Ly = 3 1, A, (Lyw)?
F=1 k=1 =1

which proves the lemma.

To prove Theorem 1 we observe that even if Lu contains derivatives of
lower order and 8, and 8, are not constants but continuously differenti-
able functions of x on V, the difference between the right and left sides
of (7) does not contain derivatives of order three, i.e. we have

(10) 2Lu Mu = 3 1, A, (Lyu)? + R(u,u)
k=1

where R(u,u) is a quadratic form in wu,=D,D,u, u,=Du and u with
continuous coefficients.

Following Hormander [4] we multiply (10) by a weight function
¢77%2, where the constant y >0 will be chosen later. After easy computa-
tions we get

(11) 2¢77% Ly Mu

3 3
2 [e72 4, (L)) + e7* [y > Ay (Lyw)?+ R(u,u)|.
=1 =1

One immediately verifies the identity

(12) 0 =L [e7% (u+u"+uP)] — €72 L, (u +u" +u?) +

+ ye_"yxZ (ulz + u22 + uZ) .
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Multiplying (12) by a non-negative constant é and adding (11) we get
(13) 2¢77" Lu Mu

3
D L [e7™ A (Lu)?] + L[ 6 (w2 + w2 +u?)] + e[y V(u,u) +Qu,u)]
=1

where

3
(14) Vw,u) = 3 Ap(Lyu)? + 6 (uy2+uy2 +u?)
i=1

and Q(u,w) is a quadratic form in wu;, u; and % with continuous coeffi-
cients.
Integrating (13) over V and using Greens formula we get

(15) S 267" Ly MudV = Se"’”“S(u,u) s+ S T2y V (w,u) + Q(u, u)] AV
v 8 v

where

3
(16) Su,u) = 3 A A, (Lpu)? + A0 (uy? +us2+u?).
k=1

For a solution of (4) the left side of (15) vanishes and we shall prove
that S(w,u) and V(u,u) can be made positive definite on S and in V
respectively by a suitable choice of the functions §, and g, and the con-
stant 6. In this way, if y is sufficiently large, we have written the right
side of (15) as a sum of two non-negative terms, which must therefore both
vanish. The vanishing of the second term combined with the positive
definiteness of the integrand implies that « vanishes in V, which is what
we wanted to prove.

We start with S(u,%) and consider first the various parts of S sepa-
rately.

By virtue of the boundary conditions, S(u,%) vanishes identically on
S; and thus we can choose f,, B, and ¢ arbitrarily on S;. As &; <f; <oy <
By < &g the A, are positive and according to the definition of S, the 4,
are positive on S,. Therefore, as ¢ is chosen positive, we have that
S(u,w) is non-negative on §,. On S, and S,, S(u,u) will be proved to be
positive definite in the derivatives which do not vanish according to the
boundary conditions. Thus we express S(w,u) in terms of w and its
derivatives in S and orthogonal to S. After the transformation

D, = v, Dy — v, D,
.D = "}IDI + 1’2.D2

v

we obtain from (16) after easy computations
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3
S(mu) = bty 3 A8 (T4 2,300+ w2 +0) + W)
k=1

where W(u,u) is a quadratic form which is linear in u,, «, and u,,
pp=v3—PB;v;, and L, and A,’ are the expressions corresponding to (6)
and (9) with «; and f, replaced by

o5 = (g +ogwy) (o0 v, — vp)

. Bi' = (1+Bwa)| (Bevi—7s)
respectively.

Here «;v, —v,= — A, is never zero on §, and S, because of the condition
(a), and B, and B, are to be chosen in a way which makes f;v; —v,= — u;
different from zero on 8, and S,.

On 8, we have u=u,=u,=u,=u,,=0 and we get

and

S(u,u) = A dgdgpi s w,,2.

To make the coefficient of u,2 positive on S,* we have only to choose
B, sufficiently close to «, and B, arbitrarily in the interval (x,, o). To
see this we notice that for an arbitrary point of S,* we have i,>0,
2A3<0, 43<0 and p,<0. Thus it suffices to choose g, in a way which
makes p, < 0 for all points on S,*. Now choosing 8, sufficiently close to
&y We obtain that the part of the line &, —g,&,=0 which corresponds to
positive values of £, belongs to the shaded area of X,* close to the line
£y — a6, =0in fig. 1. That means that for all allowed » on S,* we have
p1 < 0. Similarly, to make the coefficient of «,,? positive on S,~ we have
only to choose §, sufficiently close to x, and S, arbitrarily in the interval
(%3, %3). The proof is analogous to that for S,*.

On 8, we have u=wu,=u,,=0. We shall prove that after having fixed
B, arbitarily in the interval («,, x,) we have only to choose g, sufficiently
close to x; in order to make S(u,u) positive definite on §;* and similarly
that after having fixed S, arbitrarily in the interval (x,, «3) we have only
to choose f§, sufficiently close to «; in order to make S(u,u) positive
definite on S,~. It is sufficient to prove this for S,+, the proof for S,~
beeing analogous.

We first restrict ourselves to such S, which satisfy

MAgAgpuipiy > 0

Similarly to the discussion on S,+ above, we realize that this is obtained
if we choose S, sufficiently close to «;. In a fixed point of S;* we have

By < a5 < o' < By <o)
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if B, is sufficiently close to «;, and we start by proving that in this fixed
point S(u, %) can be made positive definite. Now we notice that choosing
p, close to &y is equivalent to choosing B, close to a3'. The main part of
S(u,u) is s

2 Ay (Lyw)?

k=1
= 1,2 = 2(By + Bo) Ug, Uy, + [y (o0 +org') + Ay (g +01y") + Ay () + x5 ],

= [, — (B + 65 ) ugs, 2+ D(By', B2) e,
where

D(B,,Ba) = Ay (' +0") + Ay (' +xy') + Ay ()" +0) — (B +82).
For «," <6, <, we get

D(By', &5") = (B — 1) (o2’ = 1) > 0.
Since D(f,’, B,’) is a continuous function of g,” in the neighbourhood of
ag', it follows that D(8,’,5,') is positive in a sufficiently small neighbour-
hood of ay’. For a fixed f;, we have thus found that for each point of
§;* there exists a neighbourhood of x,; in which

3
(17) 2 Ay (Ly w)?
k=1

is positive definite for all #,. By continuity it follows that we can choose
f; as a constant so that (17) is positive definite in u,, and w,, on the whole
of §;*. Choosing ¢ sufficiently large we obtain that

3
kzl’Ak’ (Ly'w)?® + A,0u,? + W(u,u)

is positive definite in w,,, u,, and u, on S;*, and thus S(w,u) is positive
definite on 8,+.

We have now actually proved that we can choose 8, and 8, as con-
stantson §,*US,+ and §;-US,~, respectively. Take for instance S;+uU S,*,
the reasoning for S;-US,~ beeing analogous. Then we first fix 8, suf-
ficiently close to «, to get S(u,u) positive definite on S,+ and after
that we choose B, so that S(u,u) becomes positive definite on S;+.

Since S;*US,* has a positive distance to 8,-US,~ it is evident that
there exists continuously differentiable functions 8, and 8, in V taking
the chosen constant values on 8;*US,+ and 8,-US,~ and which in V
attain only values between the values attained on 8,tUS,* and 8,-US,".

This choice of 8, and g, guarantees the existence of an ¢> 0 so that

xte = Py £ xg—e

and
agte S fy S ag—e.
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This now implies that inf,4,>0 (k=1, 2, 3), that is, the quadratic
form V(u,u) defined in (14) is positive definite in ¥. This completes the
proof of Theorem 1.

2. Finally we prove that it is possible to obtain an estimate for the
solution of the equation (3) in terms of ¢ = Lu and the boundary values.

THEOREM 2. For a solution of (3) tn a region V whose boundary S is
submitted to the same restrictions as in Theorem 1 we have the following
estimate

2 2
(18) S( Zuik2+2u,-2+u2) av < 0{ quzdv + S(u882+u82+u2) ds +
i k=1 i=1
14 14 S1
+ S(u“2+u,,,2+u82+u,2+u2) as + S(u882+u8,2+uw2+u,2+u,2+u2) s
Se Ss

where C is a constant independent of the function w.

Proor. Having chosen the functions 8, and f§, and the constants y
and § as in the proof of Theorem 1 we get from (15) (observe that C

does not necessarily denote the same constant during the course of the
proof)

S( Zlu,k +2’u2+u2)dV)

< CLSL% MudV—§S(u,u) dS}

< 0{ [IS/(Lu)deIS(Mu)de]* - SSS(u,u) dS}

2 2 i
HIS,(;Zuik +2 ul+u )dVS(p dV} - SS(u,u)dS}

k=1 =1 v :9

([ s o) ov{ongsn] - ofsa
v v )

k=1 ¢=1
2

2
( ugt+ 3/ ui2+u2)dV + %C“Sq)de - CSS(u,u) as,

i, k=1 =1 v &
that is,

TSJ(‘Z%’ uik2+22'uiz+u2)dl7 =< C’{quz dV—-§S(u,u) dS}.

, k=1 =1 v
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The inequality (18) is now obtained by estimating
- gS(u,u) s

on the various parts of S, and this is easily done, using that S(u,u)
is positive definite when the boundary values vanish.
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