THE MAXIMUM VALUE OF A FOURIER-STIELTJES TRANSFORM

EDWIN HEWITT and HERMAN RUBIN

1. Introduction. Let G be a locally compact Abelian group with character group G^*. Let (y, x) denote the function on $G \times G^*$ equal to the value of $y \in G^*$ at $x \in G$. Let φ be a bounded Radon measure on G, with Fourier-Stieltjes transform

$$\Phi(y) = \int_G (y, x) \, d\varphi(x).$$

Let $|\varphi|$ be the total variation of the measure φ (see [2, p. 459]). That is,

$$|\varphi|(A) = \sup \sum_{r=1}^n |\varphi(A_r)|,$$

the supremum being taken over all pairwise disjoint families $\{A_r\}_{r=1}^n$ of Borel sets whose union is the Borel set A. For other notation and terminology, see [3].

We are concerned in this note with the sets

$$A(\varphi) = E\left[y; \quad y \in G^*, \quad |\Phi(y)| = \int_G d|\varphi|(x) \right]$$

and

$$M(\varphi) = E\left[y; \quad y \in G^*, \quad \Phi(y) = \int_G d|\varphi|(x) \right].$$

We shall establish the following results, which characterize the possible sets $A(\varphi)$ and $M(\varphi)$ completely.

1.1 Theorem. The following conditions on a subset E of G^* are equivalent:

1.1.1 E has the form $A(\varphi)$ for some bounded Radon measure φ;

1.1.2 E has the form $M(\varphi)$ for some bounded Radon measure φ;

1.1.3 E contains a non-void G_0 and is a closed subgroup of G^* or is a translate of such a subgroup, or $E = 0$.

Received June 1, 1954.
1.2 Theorem. The measure \(\varphi \) referred to in Theorem 1.1 can be chosen to be absolutely continuous with respect to Haar measure on \(G \) if and only if \(E \) is compact.

These theorems appear to be known for the case \(G = G^* = \) the real line \(R \) under addition. The only compact subgroup of \(R \) being \(\{0\} \), Theorem 1.2 implies that integrals

\[
\int_{-\infty}^{\infty} e^{ixv} \, d\varphi(x)
\]

for non-negative absolutely continuous measures \(\varphi \) are equal to \(\varphi(R) \) for \(y = 0 \) and are less than \(\varphi(R) \) in absolute value for \(y \neq 0 \). The only proper closed subgroups \(H \) of \(R \) are of the form \(\{ n \alpha \}_{n=-\infty}^{\infty} \) \((\alpha \in \mathbb{R})\). The measure \(\varphi = \frac{1}{2} \varepsilon_{n/\alpha} + \frac{1}{2} \varepsilon_{-n/\alpha} \) has the property that \(A(\varphi) = H \). The measure \(\varphi = \frac{1}{4}[\varepsilon_{0} + \varepsilon_{2n/\alpha}] \) has the property that \(M(\varphi) = H \). These observations show that 1.1.3 is sufficient for 1.1.1 and 1.1.2 in the case \(G = R \).

2. Measure-theoretic observations. We first prove some simple properties of \(M(\varphi) \) and \(A(\varphi) \).

2.1 Theorem. Let \(\varphi \) be a bounded Radon measure on \(G \). Then there exists a bounded complex-valued Borel-measurable function \(h \) on \(G \) such that

\[
d\varphi(x) = h(x) \, d|\varphi|(x) .
\]

Proof. Since \(\varphi = \varphi_1 + i\varphi_2 \), where \(\varphi_j \) is a real-valued measure and since \(\varphi_j \) is absolutely continuous with respect to \(|\varphi| \), we can apply the Radon-Nikodym theorem ([1, p. 129 et. seq.]) to write

\[
d\varphi_j(x) = h_j(x) \, d|\varphi|(x) \quad (j = 1, 2) .
\]

We then take \(h = h_1 + ih_2 \).

2.2 Theorem. Let \(\varphi \) be a bounded Radon measure on \(G \), and let \(y_0 \) denote an element of \(G^* \). Then

\[
y_0 \in M(\varphi) \quad \text{if and only if} \quad d\varphi(x) = (y_0^{-1}, x) \, d\pi(x) ,
\]

where \(\pi \) is a non-negative bounded Radon measure on \(G \).

Proof. It follows from 2.1 that

\[
\int_{G} (y_0, x) \, d\varphi(x) = \int_{G} (y_0, x) \, h(x) \, d|\varphi|(x) .
\]
It is easy to see that the relation
\[\int_G (y_0, x) h(x) \, d|\varphi|(x) = \int_G 1 \cdot d|\varphi|(x), \]
holds if and only if \((y_0, x) h(x) = \text{ess sup} \, |h(x)| \) almost everywhere with respect to \(|\varphi|\), the ess sup being taken with respect to \(|\varphi|\). (See for example [4, Theorem 3.1.].) It follows that \(h(x) = \beta (y_0^{-1}, x) \) with a positive constant \(\beta \) almost everywhere with respect to \(|\varphi|\). Hence we take \(\pi = \beta |\varphi| \).

2.3 Theorem. Let \(\varphi \) be a bounded Radon measure on \(G \), and let \(y_0 \) be an element of \(G^* \). Then
\[y_0 \in A(\varphi) \quad \text{if and only if} \quad d\varphi(x) = \alpha (y_0^{-1}, x) \, d\pi(x), \]
where \(\pi \) is a non-negative bounded Radon measure on \(G \) and \(|x| = 1\).

Proof. We have
\[\int_G (y_0, x) \, d\varphi(x) = \int_G d|\varphi|(x) \]
if and only if there is a number \(\delta \) of absolute value 1 such that
\[\int_G (y_0, x) \, d[\delta \varphi](x) = \int_G d|\delta \varphi|(x); \]
this brings us back to Theorem 2.2, and we may take \(\alpha = \delta^{-1} \).

2.4 Theorem. Suppose that \(M(\varphi) \neq 0 \). Then the set \(M(\varphi) \) is a closed \(G_\delta \) and is a subgroup or a translate of a subgroup of \(G^* \).

Proof. Since \(M(\varphi) \) is the set where the continuous function \(\Phi \) assumes a fixed value, it is clearly a closed \(G_\delta \). It remains only to show that it is a subgroup or a translate of a subgroup. Applying Theorem 2.2, we can multiply \(d\varphi \) by a character and suppose that the measure \(\varphi \) is non-negative and that accordingly the identity of \(G^* \) lies in \(M(\varphi) \). This of course amounts simply to translating \(M(\varphi) \). Under these hypotheses, \(y \in M(\varphi) \) if and only if \((y, x) = 1 \) almost everywhere with respect to \(\varphi \). The set of such \(y \) clearly forms a subgroup of \(G^* \).

2.5 Theorem. Suppose that \(A(\varphi) \neq 0 \). Then \(A(\varphi) \) is a closed \(G_\delta \) which is either a subgroup of \(G^* \) or a translate of a subgroup of \(G^* \).

Proof. Similar to the proof of Theorem 2.4.

Theorems 2.4 and 2.5 show that 1.1.3 is necessary for 1.1.1 and 1.1.2.
3. Group-theoretic observations. Let S be a subset of G. The set $N(S)$, the annihilator of S, is the set of all $y \in G^*$ such that $(y, x) = 1$ for all $x \in S$. It is obvious that $N(S)$ is a closed subgroup of G^* and it is well known that $N(N(S)) = S$ if S is a closed subgroup of G.

3.1 Theorem. Let S be a subset of G. If S contains a non-void G_δ, then $N(S)$ is σ-compact.

Proof. Let $\{Q_n\}_{n=1}^\infty$ be a sequence of open subsets of G such that

$$0 = \bigcap_{n=1}^\infty Q_n = T \subset S.$$

Let x be any element of T. Then there exists a sequence of open sets $\{U_n\}_{n=1}^\infty$ such that $x \in U_n$, $U_n \subset Q_n$, U_n^- is compact ($n = 1, 2, 3, \ldots$) and $U_n^- \subset U_{n-1}$ ($n = 2, 3, 4, \ldots$). Now let δ be a positive real number less than $\frac{1}{10}$, and let

$$V_n = E[y; ~ y \in G^*, |(y, x) - 1| < \delta \text{ for all } x \in U_n^-]$$

($n = 1, 2, 3, \ldots$). It is known that V_n^- is compact in G^*. Hence

$$W = \bigcup_{n=1}^\infty V_n^-$$

is σ-compact. We now show that $N(S) \subset W$. In fact, if

$$y \in N(S) \cap W',$$

then for every positive integer n, there exists $x_n \in U_n^-$ such that

$$|(y, x_n) - 1| \geq \delta.$$

Since $x_n \in U_m^-$ for $m \leq n$, there is a point

$$x_0 \in \bigcap_{n=1}^\infty U_n^- \subset T \subset S$$

such that every neighborhood of x_0 contains an infinite number of the points x_n. It follows that $|(y, x_0) - 1| \geq \delta$, and this is inconsistent with the relation $y \in N(S)$. Thus $N(S)$ is contained in a σ-compact set. Since $N(S)$ is closed, it follows that $N(S)$ is σ-compact.

We note also that the annihilator of a σ-compact subgroup of G is a G_δ.

3.2 Corollary. A closed subgroup of G contains a non-void G_δ if and only if it is a non-void G_δ.

3.3 Theorem. Let H be a closed σ-compact subgroup of G. Then there exists a non-negative bounded Radon measure φ on G such that:
3.3.1 \(\varphi(A) > 0 \) for every non-void relatively open subset \(A \) of \(H \);
3.3.2 \(\varphi(H) = 1 \);
3.3.3 \(\varphi(H') = 0 \).

Proof. Let \(\lambda \) be a Haar measure on the group \(H \) (\(H \) is certainly a locally compact Abelian group). Since \(H \) is \(\sigma \)-compact, the measure \(\lambda \) is \(\sigma \)-finite. This implies that

\[
H = \bigcup_{n=1}^{\infty} P_n,
\]

where the sets \(P_n \) are pairwise disjoint and \(0 < \lambda(P_n) < \infty \) \((n = 1, 2, 3, \ldots)\). Let the function \(f \) on \(H \) be defined by the relations

\[
f(x) = 2^{-n}[\lambda(P_n)]^{-1} \quad \text{for} \quad x \in P_n \quad (n = 1, 2, 3, \ldots).
\]

It is clear that \(f \in \mathcal{L}_1(H) \) and that

\[
\int_A f(x) \, d\lambda(x) > 0 \quad \text{if} \quad \lambda(A) > 0.
\]

For an arbitrary Borel set \(Q \subset G \), let

\[
\varphi(Q) = \int_{Q \cap H} f(x) \, d\lambda(x).
\]

It is obvious that this set-function satisfies all requirements of the present theorem.

3.4 **Theorem.** If the subgroup \(H \) of Theorem 3.3 is also open, then the measure \(\varphi \) of Theorem 3.3 can be taken as absolutely continuous with respect to Haar measure on \(G \).

Proof. This follows immediately from the fact that Haar measure on an open subgroup \(H \) of \(G \) is simply Haar measure on \(G \) relativized to \(H \).

3.5 **Remark.** Theorem 3.3 is not true for general locally compact \(\sigma \)-compact Hausdorff spaces. Let \(D \) denote a countably infinite discrete space and let \(\beta D \) denote the Stone-Čech compactification of \(D \). Then, as Nakamura and Kakutani have shown [5], the compact Hausdorff space \(\beta D \cap D' \) contains a continuum of pairwise disjoint non-void open sets. It is clear that no Borel measure on \(\beta D \cap D' \) can assign positive measure to every non-void open set.

4. **Completion of the proof of Theorem 1.1.** We shall now show that given a set \(E \subset G^* \) which contains a non-void \(G_\delta \) and is a closed subgroup
or a translate of such a subgroup, there exists a bounded Radon measure \(\varphi \) on \(G \) such that \(A(\varphi) = M(\varphi) = E \). Upon translating \(E \) if necessary, which is equivalent to multiplying \(d\varphi(x) \) by a character, we may suppose that \(E \) is a subgroup of \(G^\ast \). Now consider \(N(E) \subset G \). By Theorem 3.1, \(N(E) \) is a \(\sigma \)-compact subgroup of \(G \). Consider the measure \(\varphi \) described in Theorem 3.3, for \(H = N(E) \). Since \(N(N(E)) = E \), we have \(\Phi(y) = 1 \) for all \(y \in E \). Conversely, if \(|\Phi(y)| = 1 \) for an element \(y \) of \(G^\ast \), there exists a complex number \(\beta \) of absolute value 1 such that

\[
\int_G \beta(y, x) d\varphi(x) = 1,
\]

and \(\beta(y, x) = 1 \) almost everywhere with respect to \(\varphi \). Accordingly, \((y, x) = \beta^{-1}\) for all \(x \in N(E) \), and as \((y, e) = 1 \) (\(e \) the identity of \(G \)), we find \(\beta = 1 \) and \(y \in N(N(E)) = E \). This proves that \(|\Phi(y)| < 1 \) for \(y \notin E \), and establishes Theorem 1.1.

To prove Theorem 1.2, we note that if \(E \) is compact, then \(N(E) \) is open, and then apply Theorem 3.4.

BIBLIOGRAPHY

THE UNIVERSITY OF WASHINGTON, SEATTLE, WASH., U.S.A.

AND

STANFORD UNIVERSITY, STANFORD, CALIF., U.S.A.