MATH. SCAND. 3 (1955), 90—96

VECTOR-VALUED MEASURE AND
BOUNDED VARIATION IN HILBERT SPACE

D. A. EDWARDS

1. Introduction. The object of this paper is to exhibit the relation
between two different constructions of vector-valued measure in Hilbert
space due respectively to Gelfand [3] and Cramér [1].

Let X be a real Hilbert space with zero element 6 and let 5 be the ring
of bounded Borel subsets of the real line R'. A function Z(-): <8 - X
will be called a vector-valued measure if

(®) Z) =0,

where @ is the empty set, and

(i) z(UE.) = 3 2%,
n=1 n=

whenever the E, are disjoint sets of <3 with a bounded union, the series on
the right being strongly convergent. It follows at once that 2_, Z(E,)
in fact converges unconditionally (see Hildebrandt [6]). If z(-): R' - X
is now defined by

(1) 2(0) = 6
(2) z2(b)—z(a) = Z(#) when K = (a,b],
then:

(¢) for each fixed y € X the real-valued function (z(-), y) is of bounded
variation on every bounded interval of R!;

(B) 2(-) is everywhere strongly continuous-to-the-right.

Conversely, if z: R - X is a given function which has the properties
(«) and (B), then there exists a unique vector-valued measure Z(-): S8->X
satisfying (2). These results are due, essentially, to Gelfand [3].

On the other hand, Cramér [1] has considered a function z: R! - X
together with its covariance function g: R? - R! defined by

olt, 8) = (2(), 2(9)) -
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Cramér’s argument establishes a result which can be stated in the follow-
ing form. If z satisfies (8) and also

(x") g is of Vitali bounded variation on every bounded square,

then there exists a unique vector-valued measure Z(-): 98 — X satisfy-
ing (2). The main result of the present paper is that condition (x) is
strictly weaker than («’). Some related but elementary theorems are
also included for the sake of completeness.

2. Bounded variation. z is said to be of Dunford bounded variation

(BV(D)) on the bounded interval [a, b] when and only when there is a
finite real constant K(a, b) such that, if k> 1 and a <, <ty< ... <ty b,

then A
‘;; (z(tzr) - z(t2r—l))

We state without proof a theorem of Gelfand [3] and Dunford [2].

=< K(a,b).

THEOREM 1. 2 satisfies condition («) «f and only if it is of BV(D) on
every bounded interval of R.
A function ¢: R? — R! is said to be of Fréchet bounded wvariation

(BV(F)) on the bounded rectangle H =[a, b] x [¢, d] when and only when
there is a finite real constant K(H) such that, if p=1 and ¢=1 and

b <ta< ... <tpy £b,

=
S——
S}
IIA

=8 <8 <...<8y=d,

-,

{ g=+1, =12 ...,p,

;= +1, i=14L2 ...,q,

then
P g
_2; ,2:81'7/:'11@799 < K(H),
t=1 j=
where

Aii‘P = (41 8j+1) — @t 841) — P41 Sj) + @t 8,') .
If a finite real constant M (H) exists such that

S
2 Ayl = M(H)
i=1 j=1
whenever conditions (3) are satisfied (p=1, ¢=1) then ¢ is said to be of
Vitaly bounded variation (BV(V)) on H. An immediate and well known
consequence of these two definitions is that BV(V) implies BV(F).
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THEOREM 2. z satisfies condition (x) if and only if its covariance func-
tion o is of BV(F) on every bounded rectangle.

If z has the property («x) then for each bounded interval [, b] and each
fixed y € X there is a constant A(y; a, b) such that

l(éei (z(t1+1)—2(ti)), ?/)l < A(y; a,b) < =

whenever the ¢, and ¢; satisfy (3) and (4). Hence, by uniform bounded-
ness, there is a constant A(a, b) such that

< A(a,b) < .

e, () —2(8)

=1

én,— (2(8131) — #(s))
P

Similarly,
< A(e,d) <

when the s; and 7; satisfy (3) and (4). And so, using Schwarz’s inequality,

< A(a, b) A(c,d) < oo.

b

2

]

€75 40

J

P
=1

It
-

Conversely, if p is of BV(F) on every bounded rectangle H, then on
putting H=[a, b]%, p=q, 5;=¢; and s;=¢; (all ) it is clear that

2
< K(H) < oo,

p
g &; (2(t;41) — 2(2,))
and hence that »
§ (20 —2(t0), 9)| < Iyl (KE))E .
This completes the proof.
CoroLLaRY 1. If z satisfies condition (o) then it satisfies (x).

CoroLLARY 2. z is of BV(D) on every bounded interval if and only if its
covariance o 18 of BV(F) on every bounded rectangle.

CororLARY 3. If o: R?%— R!is a covariance function and is of BV(F)
on [a, b]? then o, s) (=o(s, *)) is of bounded variation on [a, b] for each
fixed s €[a, b].

These results all have natural and immediate extensions to the case
in which X is a complex Hilbert space.

3. A counter-example. Any function ¢: R?% - R! which is of BV(V) on
a given rectangle is also of BV(F) on that rectangle. On the other hand,
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Littlewood [7] has shown how to construct a function which is of BV(F)
but not of BV(V) on a given rectangle. In the light of the theorems of
§ 2 it is natural to ask whether it is possible to construct a covariance
function which is of BV(F), without being of BV(V), on some rectangle.
A strongly continuous function z whose covariance p has this property
is now constructed using an adaptation of the method of Littlewood [7].

TrHEOREM 3. There exists a vector-valued function z defined on [0, 1]
and such that:
(i) the range of z spans a separable real Hilbert space X,;
(ii) =z s strongly continuous on [0, 1];
(iii) =z s of BV(D) on [0, 1] (and hence ¢ is of BV(F) on [0, 1]?);
(iv) o s not of BV(V) on [0, 1]

Let [a@,,,] be the real symmetric matrix defined by

Ay = 0, l

sin $z(m —n) mn=1,2,3,....

On —_— m =+ n.
m—mn

Schur [10] has shown that for any real sequence {£,}

N

N
Ao Embn| S 3 J7E2 for N =1,2,3,....
1 m=1

N
2
m=1

Using a well known theorem of Hellinger and Toeplitz [5] it follows that
[@,..] is the matrix of a bounded self-adjoint operator 4 in the space L,
of real sequences x={£,} which are such that

Il = (gsnﬂ)*< -

Moreover, A has a non-empty spectrum which is a subset of the interval
[— 37, 3x]. Consequently the operator B=4nl+ A, where I is the iden-
tity operator, is bounded (|| B|| £ =), self-adjoint and non-negative definite.
Now let

1

e T n=1,273:--~:
nt log(n+1)

un
so that 2, u,2 < co; and let ¢, =byy Uy, form, n=1,2,3, ..., where
[b4z] is the matrix of B. If
[o.+]
M=n u,?
n=1
then
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0= Jepnemen S M,
and

22’ nEmln| S M,
m=1 n=1

whenever —1=<¢, 21, —127,=1 for all m and n, the double sum being
taken in the Pringsheim sense. In particular X7, _; 2, ¢,,, converges.
However, it can be shown by a straightforward application of the method
used on p. 214 of Hardy, Littlewood and Pélya [4] that

m=1 n=1

Lastly it is easily shown that

2
of a

o-‘ “\48
8

and so [¢,,,] is the matrix ounded self-adjoint non-negative definite
operator in L,.

Now let X be a given real separable infinite dimensional Hilbert space
and let {p,} be a c.on.s.for X. Then there is a unique bounded operator

C in X such that
(Pms Cpn) = Cppp for m,m =1,2,3,....

But C is also self-adjoint and non-negative definite and hence (see e.g.
Riesz and Nagy [9]) there is a bounded self-adjoint operator 7' in X
such that 72=C. Now let z,=T¢, for n=1,2,3, ....

Then
(@s Z4) = (TP, Tpn)
= (Pm T? @)
= (Pms OPa)
= Cpn> m,n =123, ..
Now let ¢t,=0, ¢, ,,=¢,+2 ™ form=1,2,3, ..., and define 2(:) on [0, 1)

as follows. Let z(¢,)=0, z2(,.,)=2(,)+=, and let z(-) be linear in each
of the intervals [t,, ,,,,]. Then, since

00
2 cmn

n=1

b

1l
-

m

converges, 2 mip mip

=23 3ec;—>0 as m,p->oco.

i=m j=m

mip
2 Z;

1=m
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Hence {z(t,)} is a Cauchy sequence in X and we can, and do, define
2(1)=lim,_, ,2(¢,). Then z(-) plainly satisfies conditions (i) and (ii) of
Theorem 3.

To prove (iii) it is enough, by Theorems 1 and 2 to show that z satis-
fies (x). Now

N N N
el =3 Yepnemen s M for N =1,23,.
n=1

whenever ¢, = + 1 for all n. For any fixed y € X it now follows, on taking
&, =8gn(z,, y) for each n, that

ﬁ' (@ 9] = (ZNex )

Consequently, for each y € X,

SMy, N=1,23,....

I lm )| < .

=1

3

Butif p21and 0=s,<s;<...<8,,;=1 then

l\1 2

(%, )| < o0

if |(z(sj+1)_z(8j)’ 3/)] =
j=

Il
-

n

z therefore satisfies the condition (x).
Finally,

22\(z(t1+1 2(t;), 21tj+1 —2(t |—22|c¢j|—>oo as N - co.

=1 j= t=1 j=

Hence the covariance g of z is not of BV(V) on [0, 1]%; and so the proof
of Theorem 3 is complete.

The use of covariance functions of BV(V) in the theory of stochastic
processes was introduced by Loéve [8] and continued by Cramér [1],
whose main theorem subsumed some of Loéve’s work; and it now seems
desirable that this theorem in turn should be generalized by using Fré-
chet instead of Vitali bounded variation. A proof that such a generaliza-
tion is possible will be given in a forthcoming paper, and it is clear from
the theorems of the present paper that this extension will, in a certain
sense, be the ultimate form of Cramér’s theorem.

Mr. D. G. Kendall suggested to me the problem which has led to the
present paper, and I cannot forgo the pleasure of thanking him here for
his encouragement and advice during its preparation.
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