VECTOR-VALUED MEASURE AND BOUNDED VARIATION IN HILBERT SPACE

D. A. EDWARDS

1. Introduction. The object of this paper is to exhibit the relation between two different constructions of vector-valued measure in Hilbert space due respectively to Gelfand [3] and Cramér [1].

Let X be a real Hilbert space with zero element θ and let \mathcal{B} be the ring of bounded Borel subsets of the real line R^1 . A function $Z(\cdot): \mathcal{B} \to X$ will be called a vector-valued measure if

(i)
$$Z(\Phi) = \theta$$
, where Φ is the empty set, and

(ii)
$$Z\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} Z(E_n)$$

whenever the E_n are disjoint sets of \mathcal{B} with a bounded union, the series on the right being strongly convergent. It follows at once that $\sum_{n=1}^{\infty} Z(E_n)$ in fact converges unconditionally (see Hildebrandt [6]). If $z(\cdot) \colon R^1 \to X$ is now defined by

$$z(0) = \theta$$

(2)
$$z(b)-z(a)=Z(E)$$
 when $E=(a,b]$, then:

- (a) for each fixed $y \in X$ the real-valued function $(z(\cdot), y)$ is of bounded variation on every bounded interval of R^1 ;
- (β) $z(\cdot)$ is everywhere strongly continuous-to-the-right.

Conversely, if $z: \mathbb{R}^1 \to X$ is a given function which has the properties (α) and (β) , then there exists a unique vector-valued measure $Z(\cdot): \mathcal{B} \to X$ satisfying (2). These results are due, essentially, to Gelfand [3].

On the other hand, Cramér [1] has considered a function $z\colon R^1\to X$ together with its covariance function $\varrho\colon R^2\to R^1$ defined by

$$\varrho(t, s) \equiv (z(t), z(s)).$$

Cramér's argument establishes a result which can be stated in the following form. If z satisfies (β) and also

- (α') ϱ is of Vitali bounded variation on every bounded square, then there exists a unique vector-valued measure $Z(\cdot)$: $\mathscr{B} \to X$ satisfying (2). The main result of the present paper is that condition (α) is strictly weaker than (α') . Some related but elementary theorems are also included for the sake of completeness.
- **2.** Bounded variation. z is said to be of Dunford bounded variation (BV(D)) on the bounded interval [a, b] when and only when there is a finite real constant K(a, b) such that, if $k \ge 1$ and $a \le t_1 < t_2 < \ldots < t_{2k} \le b$, then

 $\left\| \sum_{r=1}^{k} \left(z(t_{2r}) - z(t_{2r-1}) \right) \right\| \leq K(a, b) .$

We state without proof a theorem of Gelfand [3] and Dunford [2].

THEOREM 1. z satisfies condition (α) if and only if it is of BV(D) on every bounded interval of R^1 .

A function $\varphi \colon R^2 \to R^1$ is said to be of *Fréchet bounded variation* (BV(F)) on the bounded rectangle $H = [a, b] \times [c, d]$ when and only when there is a finite real constant K(H) such that, if $p \ge 1$ and $q \ge 1$ and

(3)
$$\left\{ \begin{array}{l} a \leq t_1 < t_2 < \ldots < t_{p+1} \leq b , \\ c \leq s_1 < s_2 < \ldots < s_{q+1} \leq d , \end{array} \right.$$

and if

(4)
$$\begin{cases} \varepsilon_i = \pm 1, & i = 1, 2, \dots, p, \\ \eta_i = \pm 1, & j = 1, 2, \dots, q, \end{cases}$$

then

$$\left|\sum_{i=1}^{p}\sum_{j=1}^{q}\varepsilon_{i}\eta_{j}\,\Delta_{ij}\,\varphi\right|\leq K(H)\;,$$

where

$$\Delta_{ij} \varphi \equiv \varphi(t_{i+1}, s_{j+1}) - \varphi(t_i, s_{j+1}) - \varphi(t_{i+1}, s_j) + \varphi(t_i, s_j) .$$

If a finite real constant M(H) exists such that

$$\sum_{i=1}^{p} \sum_{j=1}^{q} |\Delta_{ij} \varphi| \leq M(H)$$

whenever conditions (3) are satisfied $(p \ge 1, q \ge 1)$ then φ is said to be of *Vitali bounded variation* (BV(V)) on H. An immediate and well known consequence of these two definitions is that BV(V) implies BV(F).

THEOREM 2. z satisfies condition (α) if and only if its covariance function ϱ is of BV(F) on every bounded rectangle.

If z has the property (α) then for each bounded interval [a, b] and each fixed $y \in X$ there is a constant A(y; a, b) such that

$$\left| \left(\sum_{i=1}^{p} \varepsilon_{i} \left(z(t_{i+1}) - z(t_{i}) \right), \ y \right) \right| \leq A(y; \ a, b) < \infty$$

whenever the t_i and ε_i satisfy (3) and (4). Hence, by uniform boundedness, there is a constant A(a, b) such that

$$\left\| \sum_{i=1}^{p} \varepsilon_i \left(z(t_{i+1}) - z(t_i) \right) \right\| \leq A(a, b) < \infty.$$

Similarly,

$$\left\| \sum_{j=1}^{q} \eta_{j} \left(z(s_{j+1}) - z(s_{j}) \right) \right\| \leq A(c, d) < \infty$$

when the s_i and η_i satisfy (3) and (4). And so, using Schwarz's inequality,

$$\left|\sum_{i=1}^{p}\sum_{j=1}^{q}\varepsilon_{i}\eta_{j}\Delta_{ij}\varrho\right| \leq A(a,b)A(c,d) < \infty.$$

Conversely, if ϱ is of BV(F) on every bounded rectangle H, then on putting $H = [a, b]^2$, p = q, $\eta_i = \varepsilon_i$ and $s_i = t_i$ (all i) it is clear that

$$\left\| \sum_{i=1}^{p} \varepsilon_{i} \left(z(t_{i+1}) - z(t_{i}) \right) \right\|^{2} \leq K(H) < \infty,$$

and hence that

$$\sum_{i=1}^{p} \left| \left(z(t_{i+1}) - z(t_{i}), \ y \right) \right| \le \|y\| \left(K(H) \right)^{\frac{1}{2}}.$$

This completes the proof.

COROLLARY 1. If z satisfies condition (α') then it satisfies (α).

COROLLARY 2. z is of BV(D) on every bounded interval if and only if its covariance ρ is of BV(F) on every bounded rectangle.

COROLLARY 3. If $\varrho: R^2 \to R^1$ is a covariance function and is of BV(F) on $[a, b]^2$ then $\varrho(\cdot, s)$ ($\equiv \varrho(s, \cdot)$) is of bounded variation on [a, b] for each fixed $s \in [a, b]$.

These results all have natural and immediate extensions to the case in which X is a complex Hilbert space.

3. A counter-example. Any function $\varphi: \mathbb{R}^2 \to \mathbb{R}^1$ which is of BV(V) on a given rectangle is also of BV(F) on that rectangle. On the other hand,

Littlewood [7] has shown how to construct a function which is of BV(F) but not of BV(V) on a given rectangle. In the light of the theorems of $\S 2$ it is natural to ask whether it is possible to construct a covariance function which is of BV(F), without being of BV(V), on some rectangle. A strongly continuous function z whose covariance ϱ has this property is now constructed using an adaptation of the method of Littlewood [7].

THEOREM 3. There exists a vector-valued function z defined on [0, 1] and such that:

- (i) the range of z spans a separable real Hilbert space X_0 ;
- (ii) z is strongly continuous on [0, 1];
- (iii) z is of BV(D) on [0, 1] (and hence ρ is of BV(F) on $[0, 1]^2$);
- (iv) ϱ is not of BV(V) on $[0, 1]^2$.

Let $[a_{mn}]$ be the real symmetric matrix defined by

$$a_{nn} = 0$$
,
$$a_{mn} = \frac{\sin \frac{1}{2}\pi(m-n)}{m-n}, \quad m \neq n.$$

Schur [10] has shown that for any real sequence $\{\xi_n\}$

$$\left| \sum_{m=1}^{N} \sum_{n=1}^{N} a_{mn} \, \xi_{m} \xi_{n} \right| \leq \frac{1}{2} \pi \sum_{m=1}^{N} \xi_{m}^{2} \quad \text{for} \quad N = 1, 2, 3, \dots.$$

Using a well known theorem of Hellinger and Toeplitz [5] it follows that $[a_{mn}]$ is the matrix of a bounded self-adjoint operator A in the space L_2 of real sequences $x = \{\xi_n\}$ which are such that

$$||x|| \equiv \left(\sum_{n=1}^{\infty} \xi_n^2\right)^{\frac{1}{2}} < \infty.$$

Moreover, A has a non-empty spectrum which is a subset of the interval $[-\frac{1}{2}\pi, \frac{1}{2}\pi]$. Consequently the operator $B = \frac{1}{2}\pi I + A$, where I is the identity operator, is bounded ($||B|| \le \pi$), self-adjoint and non-negative definite. Now let

$$u_n = \frac{1}{n^{\frac{1}{2}}\log(n+1)}, \quad n = 1, 2, 3, \ldots,$$

so that $\sum_{n=1}^{\infty}u_n^2<\infty$; and let $c_{mn}=b_{mn}\;u_mu_n$ for $m,\,n=1,\,2,\,3,\,\ldots$, where $[b_{mn}]$ is the matrix of B. If

$$M = \pi \sum_{n=1}^{\infty} u_n^2$$

then

$$0 \leq \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{mn} \, \varepsilon_m \varepsilon_n \leq M \, ,$$

and

$$\left| \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{mn} \, \varepsilon_m \, \eta_n \right| \leq M \, ,$$

whenever $-1 \le \varepsilon_m \le 1$, $-1 \le \eta_n \le 1$ for all m and n, the double sum being taken in the Pringsheim sense. In particular $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{mn}$ converges. However, it can be shown by a straightforward application of the method used on p. 214 of Hardy, Littlewood and Pólya [4] that

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} |c_{mn}| = \infty.$$

Lastly it is easily shown that

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{mn}^2 < \infty ,$$

and so $[c_{mn}]$ is the matrix of a bounded self-adjoint non-negative definite operator in L_2 .

Now let X be a given real separable infinite dimensional Hilbert space and let $\{\varphi_n\}$ be a c.o.n.s. for X. Then there is a unique bounded operator C in X such that

$$(\varphi_m, C\varphi_n) = c_{mn} \quad \text{for} \quad m, n = 1, 2, 3, \ldots.$$

But C is also self-adjoint and non-negative definite and hence (see e.g. Riesz and Nagy [9]) there is a bounded self-adjoint operator T in X such that $T^2 = C$. Now let $x_n = T\varphi_n$ for $n = 1, 2, 3, \ldots$.

$$(x_m, x_n) = (T\varphi_m, T\varphi_n)$$

= $(\varphi_m, T^2 \varphi_n)$
= $(\varphi_m, C\varphi_n)$
= $c_{mn}, m, n = 1, 2, 3, ...$

Now let $t_1 = 0$, $t_{m+1} = t_m + 2^{-m}$ for $m = 1, 2, 3, \ldots$, and define $z(\cdot)$ on [0, 1) as follows. Let $z(t_1) = \theta$, $z(t_{m+1}) \equiv z(t_m) + x_m$ and let $z(\cdot)$ be *linear* in each of the intervals $[t_m, t_{m+1}]$. Then, since

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{mn}$$

converges,

$$\left\| \sum_{i=m}^{m+p} x_i \right\|^2 = \sum_{i=m}^{m+p} \sum_{j=m}^{m+p} c_{ij} \to 0 \quad \text{as} \quad m, p \to \infty.$$

Hence $\{z(t_n)\}$ is a Cauchy sequence in X and we can, and do, define $z(1) = \lim_{n \to \infty} z(t_n)$. Then $z(\cdot)$ plainly satisfies conditions (i) and (ii) of Theorem 3.

To prove (iii) it is enough, by Theorems 1 and 2 to show that z satisfies (α) . Now

$$\left\|\sum_{n=1}^{N} \varepsilon_n x_n\right\|^2 = \sum_{m=1}^{N} \sum_{n=1}^{N} c_{mn} \, \varepsilon_m \varepsilon_n \leq M \quad \text{for} \quad N = 1, 2, 3, \ldots,$$

whenever $\varepsilon_n = \pm 1$ for all n. For any fixed $y \in X$ it now follows, on taking $\varepsilon_n = \operatorname{sgn}(x_n, y)$ for each n, that

$$\sum_{n=1}^{N} |(x_n, y)| = \left| \left(\sum_{n=1}^{N} \varepsilon_n x_n, y \right) \right| \leq M^{\frac{1}{2}} ||y||, \qquad N = 1, 2, 3, \ldots.$$

Consequently, for each $y \in X$,

$$\sum_{n=1}^{\infty} |(x_n, y)| < \infty.$$

But if $p \ge 1$ and $0 \le s_1 < s_2 < \ldots < s_{p+1} \le 1$ then

$$\sum_{j=1}^{p} \left| \left(z(s_{j+1}) - z(s_{j}), \, y \right) \right| \, \leqq \sum_{n=1}^{\infty} \, \left| (x_{n}, \, y) \right| \, < \, \infty \, \, .$$

z therefore satisfies the condition (α) .

Finally,

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \left| \left(z(t_{i+1}) - z(t_i), \ z(t_{j+1}) - z(t_j) \right) \right| = \sum_{i=1}^{N} \sum_{j=1}^{N} |c_{ij}| \to \infty \qquad \text{as} \quad N \to \infty \; .$$

Hence the covariance ϱ of z is not of BV(V) on $[0, 1]^2$; and so the proof of Theorem 3 is complete.

The use of covariance functions of BV(V) in the theory of stochastic processes was introduced by Loève [8] and continued by Cramér [1], whose main theorem subsumed some of Loève's work; and it now seems desirable that this theorem in turn should be generalized by using Fréchet instead of Vitali bounded variation. A proof that such a generalization is possible will be given in a forthcoming paper, and it is clear from the theorems of the present paper that this extension will, in a certain sense, be the ultimate form of Cramér's theorem.

Mr. D. G. Kendall suggested to me the problem which has led to the present paper, and I cannot forgo the pleasure of thanking him here for his encouragement and advice during its preparation.

REFERENCES

- H. Cramér, A contribution to the theory of stochastic processes, Proceedings of the 2nd Berkeley symposium on math. statistics and probability 1950, 329-339.
- 2. N. Dunford, Uniformity in linear spaces, Trans. Amer. Math. Soc. 44 (1938), 305-356.
- I. Gelfand, Abstrakte Funktionen und lineare Operatoren, Rec. Math. Moscou, N. S. 4 (1938), 235-284.
- 4. G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge, 1934.
- E. Hellinger and O. Toeplitz, Grundlagen für eine Theorie der unendlichen Matrizen, Math. Annalen 69 (1910), 289-330.
- T. H. Hildebrandt, On unconditional convergence in normed vector spaces, Bull. Amer. Math. Soc. 46 (1940), 959-962.
- J. E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart.
 J. Math. (2) 1 (1930), 164-174.
- M. Loève, Fonctions aléatoires du second ordre. Appendix to P. Lévy, Processus stochastiques et mouvement brownien, Paris, 1948.
- 9. F. Riesz and B. Sz.-Nagy, Leçons d'analyse fonctionnelle, Budapest, 1952.
- I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math. 140 (1911), 1-28.

ORIEL COLLEGE, OXFORD, ENGLAND