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THE DIOPHANTINE EQUATION 7*=£&-D.
A NOTE ON CASSELS’ METHOD

ERNST 8. SELMER

1. In his paper [1] on the rational solutions of the diophantine equa-
tion
(1) n?=8-D,

Cassels has given some far-reaching theorems about the number of gener-
ators (in the Mordell-Weil sense) of the corresponding curve, together
with a table of solutions of infinite order for all | D] <50. Within these
limits, his congruence conditions turn out to be sufficient for solubility
of (1). He conjectured in [1] that his conditions were sufficient for all D,
but retracted this in an addendum [2], after I had shown him some coun-
terexamples, cf. [3, p. 215].

When D is not a perfect cube, Cassels works in the purely cubic field
K(D*%) =K(d), where a “first descent” for the equation (1) leads to a
finite number of equations
(2) z—1%20 = po?

with rational integer # and ¢ (where &=x[t?). Here u (known) and «
(unknown) are numbers from the field K(J), and the number of possible
u determines the number of generators in the following way:

Let k be the number of independent generators of even order for the
class-group of the field K(6). To each such generator, we can find an
integer y; (i=1, 2, ..., k) of the field, such that y >0 and [y] (prime to
2) is the square of an ideal, while neither y nor £y is the square of a
number from K(8). Here & (>0) is the basic unit, or any unit which is
not the square of another unit. The a priori possible values of pu are
then given by

(3) u o= &y, 1=1,2,...,k; a,a; =0,1.
When D= +1 (mod9), the ideal [3]=123, and we must also introduce a
(4) [vo] = 18
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(possibly with an “auxiliary square” if ¢3 is not a principal ideal), and
a corresponding exponent a, in (3).
The number of a priori possible x is consequently a power of 2:

k+1 if D= +1 (mod9)
N, =2%;, @G, =
k+2 if D=+1(mod9).

(Note: When D is exactly divisible by a rational cube, there are still
further possibilities for y, with a corresponding increase of the exponent
G,. Since this alternative does not occur in the below applications, we
leave it out here.)

After applying the congruence conditions of Cassels, the number of
remaining equations (2) is still of the form

N =2, G=6,.

As I show elsewhere [7], a slight extension of Cassels’ conditions in some
cases will imply that these remaining equations are possible for all moduls.
Finally, the number of soluble equations (2) is also of the form

n=2, gz @G.

A

Here g is the number of generators (basic solutions) of infinite order for the
given equation (1). (=0, that is n=1, corresponds to the only value
p=1, which is possible for all moduli but which can be excluded by the
principle of “infinite descent’’.)

If the congruence conditions of the first descent were sufficient, we
would of course have g=G. As already mentioned, however, there are in
fact cases with g<@. I have earlier [5] formulated the following con-
jecture concerning rational points on cubic curves:

When a second descent exists, the number of generators is an even number
less than what is tndicated by the first descent.

In the same connection, it was shown that a second descent is always
theoretically possible for a Weierstrass normal form. According to the
conjecture, we should consequently always find

G'—g = an even number

(including, of course, the most common value 0). This is in fact verified
in all cases I have examined by Cassels’ method. When g< @, I have
been able to locate the cases

(5) G=29¢g=0;, G=3,g=1.
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In a different connection (cf. [5, p. 51]), I have also had cases with none
or two existing generators out of four indicated.

2. My examples of the cases (5) originate from the curve
(6) X3+ Y3 =AZ3,

which I have earlier [3] [4] treated systematically, using a different type
of descent and giving the basic solutions for all 4 <500 (we may clearly
assume 4 >0 and cube-free). It was the study of (6) that first led to my
formulation of the above-mentioned conjecture.

It is well known (cf. [3, Ch. I]) that (6) is rationally equivalent to a
curve (1) of the form

gt = E3 — P42,
This is again birationally connected with the curve
Nt = 8+ 142,

and the two curves have the same number of generators of infinite order.
In Cassels’ notation, we can consequently choose D= —2442 and work
in the purely cubic field

K(DY) = K((2042)}) = K((44)}).

This means a simplification if 4 is even, 4 =24,, K(D*) =K(4,*). Since
a factor 26 can be removed from D, we get (|| means “‘exactly divides”):

(7) 2|4 > 21D, 2|4 22|D, 2rA-2|D.

The two first cases are covered by Cassels’ Theorems VIII and XI
respectively, and the last case by the formulae in his § 20. (As I show in
[7], the conditions when 22||.D and 2%||.D can be considerably simplified.)
Whenever D= +1 (mod9) and a y, of the type (4) is used, his conditions
mod3 of § 22 must also be applied.

I denote 44 (4 odd) or 4,=344 (4 even) by m, and the corresponding
cubic field by K(m?)=K(#). To simplify the calculations, I have trans-
lated Cassels’ conditions in the cases (7) into this field:

1) 2|4, m = 34, & = m}:
U= 1, md, 92 (mod4),
or p= 1-md, 2—md, 1+20 (modg,?),
where g, is the second degree prime ideal factor of 2, and

0.2 = [4, 1 +md +97].
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2) 22||4, m = 34, O = m}:

The coefficient of ¢ in x must be even.
3) 214, m = 44, ¥ = (44)}, § = (242} .

The coefficient of & in u must be even.

When m= +1 (mod9) and a y, of the type (4) is used, we get the
additional conditions:

l)and 2) p = 1—-md, —1+9% md—-9% (mod3),
3) u= 1—-49, —1-9, A9+F (mod3).

Both congruences are mod3 in the coefficients.
When m= +1 (mod9) and a y, is not used, the coefficients of y must
be integers mod 3. (This condition is not stated by Cassels.)

For m <50, the fields K(m¥)=K(¢#) are covered by a table in Cassels’
paper [1], giving class-numbers %, basic units ¢ and the numbers y for
even k. I have recently [6] extended the table to 7 <100. In my notes,
I have further treated the fields with 100 <m £250, and for 22|m up
to m <400. This means that I can cover the equation (6) by Cassels’
method in the cases

8) A odd and < 100; A4 even and < 500.

For my purpose, only a summary treatment of the fields with m > 100
was necessary. It is usually quickly decided whether the class-number
h is even or odd; in the latter case, the actual value of A is without
interest. — No further examination is necessary if for instance

2¢h, m = £1 (mod9), g=1
9) 2¢h, m = +1 (mod9), g = 2
2”}"’ m£ +1 (mOdg)s g=2,

since then the a priori possible values of u just suffice to give the correct
number g of generators. — When Cassels’ conditions must be used for
exclusions, the generally complicated determination of the unit can be
avoided. If for instance g is reduced by one in the cases (9), it will suffice
to find and exclude one x =% with the ordinary properties of a y, except
that it is unnecessary to examine whether ¢¥ is the square of a number
from the field. Such a y is usually quickly found, since N(y) may be the
square of any odd number.
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3. My calculations show that the method of Cassels gives the correct
number of generators for the curve (6) within the limits (8), except in twelve
insoluble cases where his conditions indicate two generators (G=2, g=0),
and tn one case where there is one existing generator out of three indicated

(G=3,9=1).

The cases with =2, g=0 are given by the following table:

A m h Basic unit ¢ Y

41 | 164 | 6 | 3294229 —30% 5+9
59 | 236 | 6 | 1889—69509+1268 5+9
116 | 58| 6 | 1-—89+292 33 -84
122 61| 6 | 1—169+492 —394109
158 | 79| 6 | 2924959 — 3892 20—

= 249

226 | 113 | 4 | }(—645— 176+ 6492)3 7’:: _ _4119
242 | 112 | 2 | 1—-28+3492 12+9
262 | 131 | 2 | 3(268570+44504 9 —19175 923 ~-8+39
208 | 149 | 2 | 3(—59780—19027 9+ 5716 92)? 17-29
302 | 151 | 6 | —8545391+ 11834909+ 79108 92 §—9
326 | 163 | 3 | —86984— 122421 &+ 25326 92 yo = —23+8%9
332|166 | 6 | 1—2429+ 4492 17+ 29

The only case with m= +1 (mod9) is m=163, where [y,]=1Pg,? r3.
The class-group for m =113 is non-cyclie, with two generators of order 2,
giving 23=8 a priori possible values y. Of these, however, the 4 combi-
nations containing ¢, are excluded, while the other 4 combinations are
possible for all moduli. In the remaining cases of the table, 2||k and
m=% + 1 (mod9), that is 22=4 a priori values u, which turn out to be
possible for all moduli when checked by Cassels’ conditions. On the
other hand, the values of 4 in the table all represent insoluble equations

(6).

The one case with G=3, g=1is

A = 428, m = 214, = 12 (non-cyclic),

e=1-5494+99% 1y, = —T74+29, p,=33-29.
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All combinations of &, y, and y, satisfy the condition 2) of Section 2.
From the solution of (6) for 4 =428 (cf. [3, Table 61), we find the one
basic solution
£=12, 5 =218
of the corresponding equation (1):
n? = 8 + 2142,

It is easily seen that this solution results from the choice u=¢y,. The
remaining combinations of ¢, ¥; and y,, although possible for all moduli,
lead to ¢nsoluble equations (2).

To get some more examples of the case G=3, g=1, I have examined
several values of A beyond the limits (8) such that

(10) A= +2 thatis, m = F1 (mod9); g =1.

If then the class-number A is even, there are at least three a priori pos-
sible generators, which might “survive” the first descent. (There are
four such cases within the limits (8), but in all of them Cassels’ conditions
reduce the number of generators to the correct value 1.)

I first examined the odd values of 4 between 100 and 200 and satis-
fying (10), but found only odd class-numbers. I then turned to the even
values of 4 >500. These are not included in the tables of [3], but the
methods of that paper lead to a quick determination of the first values
of 4>500 and satisfying (10). The smallest such value with an even
class-number did indeed furnish the example I was seeking:

A=1718,g=1;, m=359= -1 (mod9), h = 2,
e = 21429905112 + 21360312959 — 724797018 92,
y =129, yy= —28+02.

All combinations of ¢, y and y, are possible mod 4, and those containing
7 also mod 3.
The solubility of the corresponding equation (6):

(11) X34 Y3 = 718 Z3 = 2-359 Z3
is determined by the one equation
B+2y2+3592° = 0.

This is clearly satisfied by
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with the corresponding values
X = 5767471, Y = —3797279, Z = 575834

(cf. [3, Theorem I1). This is the one basic solution of (11).
The corresponding solution of the equation (1):

7t = £34 3592
is given b
& Y £= —28, 5 =327,

and will obviously result from the choice y=9, The remaining com-

binations of ¢, ¥ and y, lead to insoluble equations (2).
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