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SOME PROBLEMS IN THE THEORY OF
ALMOST PERIODIC FUNCTIONS

SIGURDUR HELGASON

Introduction. In this paper we study some problems concerning almost
periodic functions on an abelian topological group G. These functions
form a Banach algebra A under the norm |jz||=sup,|x()|, pointwise ad-
dition and convolution multiplication. The main theorems of the theory
of almost periodic functions can be expressed very simply in terms of
the ideal structure of 4.

In section 2 we give a solution of the multiplier problem for almost
periodic Fourier series, which corresponds to determining the operators
on A4 that commute with translations. The answer shows that the multi-
pliers are in general non-measurable, and the Weil-van Kampen com-
pactification is therefore an indispensable tool, even for almost periodic
functions on the real line. An interesting special case of the multiplier
problem is the following question: What subsets § (called distinguished
sets) of the character group G* have the property that 2, ga(y)x(?)
is an almost periodic Fourier series whenever X'a(y)x(¢) is an almost
periodic Fourier series? Under an additional (positivity preserving) re-
striction the distinguished sets are determined (theorem 3), but we have
not been able to give any simple identification of these sets in general,
and theorem 4 seems to indicate that rather deep algebraic properties of
the character group G* are involved.

In the last section the possibility of permuting Fourier exponents in
an almost periodic Fourier series is investigated. This corresponds to
the study of the automorphisms of A. In theorem 5 the isometric auto-
morphisms of A are determined.

The author wishes to express his gratitude to Professor S. Bochner
for his advice and many helpful conversations during the preparation
of this paper.

1. Preliminaries. Let G be an abelian topological group with the group
operation denoted multiplicatively. A complex valued continuous func-
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tion xz(t) on G is called almost periodie (Bochner [2], von Neumann [16])
if the set of translates of z(t), {x(ht)|heG}, has a compact closure
H{x(ht)} in the Banach space &™(G) of complex valued bounded con-
tinuous functions on G under the norm |z||=supg|z(t)|. Special almost
periodic functions are the characters of &, namely the continuous func-

tions y(¢) satisfying:
2(st) = x(s) x(t) foralls,te@ and |g(t) =1.

The set of all almost periodic functions on G is a Banach space A
under the norm |jz|| =sup,|z(t)]. On A there exists a form I (x), the mean
value, which is uniquely determined by the four following properties:

@) ML) =1;
(ii) M(xz+pPy) = aM(x) + fM(y) forall x,ye A, «,f complex;

(iii) M (x(ct)) = M(x(t)) for each c € G;

(iv) Mz) 20 if =z =0.

Other important properties of It are:
(v) (The ergodic property) M (x) is the unique constant in the closed
convex hull of the translates of x(f);
(vi) z 20 and PW(z) =0 imply =« =0.
The convolution of two almost periodic functions x(¢) and y(t) is de-

fined by zxy(t) = M {z(@Es) y(s)}

and is again an almost periodic function. The Banach space A4 is a
Banach algebra under convolution-multiplication. (For the terminology
of the theory of Banach algebras see Loomis [14]). This algebra does not
in general have an identity element (in fact only if the group is finite),
but a substitute is given by the following property: To every €4 and
¢> 0 there exists an element ycA4 such that

(1) lexy — all <e.

From this it follows at once that a closed ideal in 4 is an invariant sub-
space (under translation), and the converse, that a closed invariant sub-
space is a closed ideal, is a consequence of the above-mentioned proper-
ties of the mean value. (See von Neumann [16, p. 451].)

If 2(¢) is almost periodic and y(t) is a character, then

z*x(t) = a(y) x(t)

where a(y) is a complex number, the Fourier coefficient of z at y. The
formal series

2 a(t) > 3 alz) x(¢)
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is called the Fourier series of z(f); formal series that occur as Fourier
serie$ for almost periodic functions are called almost periodic Fourier
sertes. The characters y at which a(y) # 0 are called the Fourier exponents
of x(¢).

Let G* be the character group of G. The group G* will usually be
given the discrete topology and then denoted G*;. For an arbitrary
subset S < G* consider the set

(3) Is = {x | zed, a(y)=M(z(¢) x(#))=0 for each y¢S},

which is the family of functions in 4 whose Fourier exponents belong
to S. It is easily seen that Ig is a closed ideal. Conversely, by the ap-
proximation theorem, every closed ideal is of this form.

There is therefore a one-to-one correspondence between all the closed
ideals in the algebra 4 and all subsets of the character group G*. Since
this correspondence preserves the inclusion, the regular maximal ideals,
which are closed, will correspond to complements of points and are of
the form
(4) M, = {x|=xzcd, a(y)=0}.

The uniqueness theorem for the Fourier series representation (2) may
therefore be expressed: 4 is semi-simple. Similarly, the approximation
theorem has shown that every closed ideal in 4 is the intersection of the
regular maximal ideals containing it.

An application is the following proposition. (2* means there and in
the sequel a finite sum.)

ProrosiTioN 1. The absolute value of the mean value can be represenied
Im(x)l = infai,a@ “ 2* &; x(ta‘i)“
where the a; run through all elements of G and the o; run through all com -

plex numbers for which X*x;=1.

Proor. Evidently
inf || 2o, z(ta,)||

Taj=1,alla;

= inf |ja@t) — 3'*B; «(tb;)|| = distance {z, RN},

Z6i=0, allb;
where 9 is the closure of the set
{2'* B, x(tb,) | 2'*B; = 0, b; arbitrary} .

N is a closed invariant subspace, hence a closed ideal. There exists

4*
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therefore a set N < G* such that 9 is the set of functions whose Fourier
exponents belong to N. If y(t)=2*B,x(tb,) then

Wi{y(t)f("f_)} = [Z*ﬂix(bi)] alx)
a(y) = My{x(t) 2(2)} -

where

Thus the set N is identical with the Fourier exponent set of x(t) with the
exception of y=1, which does not belong to N, but may be a Fourier
exponent of z(f). We have then for arbitrary ¢> 0 a function y, €M such

that
distance {z, N} = inf [z —y||
yeR

z lg—pl — e
2 M(je—y,]) — &
2z [Mx—gy)| — &
= [M(x)| - .

On the other hand
inﬁzllw—yll S o= (@—a)1)]| = [a(l)] = [M(2)|,
ye

which proves the proposition.

An interesting problem that suggests itself is the description of the
automorphisms of the algebra A, that is, one-to-one mappings 7' of 4
onto itself such that

Tax+py) = «T(x) + BT (y) o, B complex, z,ye 4
Txy) = T(z)*T(y) z,yed.

Under the mapping regular maximal ideals will be mapped onto regular
maximal ideals, such that the automorphism 7' induces a permutation
of the character group G*. Conversely, if ¢ is a permutation of G*, such
that for every Fourier series XZ'a(y)x(t) for a function in 4, the series

L2 o)) and  Ya(y) o (z) ()

are also glmost periodic Fourier series, then there is, in the obvious way,
induced- an automorphism of 4. The above-mentioned problem will be
considered in section 5.

To avoid trivial discussions we shall always assume in the sequel that
@ i3 a maximal almost periodic group.
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2. Multipliers. We recall that almost periodicity of x(t) on G means
compactness of the closure H{z(ht}}. As pointed out by Stepanoff and
Tychonoff, this amounts to an embedding of G in a compact group.
Later A. Weil [17] and E. van Kampen [13] introduced the universal
compactification which reveals the nature and scope of the theory of
almost periodicity. Their construction simplifies in the abelian case due
to the duality theory which is then available, and we give the main
details in this case since these will be useful later.

Let @ be an abelian maximal almost periodic group and let G be the
compact character group of G*; and let (y, t) be the function on G*; x G
that defines the duality between G*; and G. For each fixed te@, x(f)
is a continuous character of G*; and since the group G is maximal
almost periodic, different teG give different characters y(¢), such that ¢
may be considered as a subset of . The topology of G is the weakest
one for which the functions t - (y, t) are continuous and these functions
are extensions of the functions ¢t — y(t).

We shall prove that G is dense in G. Suppose to the contrary that
the closure of G in G, say G, is + G. Choose 1° p in G — @, 2° a neighbor-
hood U,, of p such that U, and & are disjoint, 3° compact neighborhoods
C, and C, of p and e, respectively, such that C,,C,”* < U,, 4° contin-
uous positive functions g,,(t) and g.(t) on G with support contained in
C, and C,, respectively, and g,(p)+0, g.(e) +0. Further, denote by ds
the normalized Haar measure on G and consider the convolution

(&) = Sgp(ts) g.(s)ds .

G

f(¢) is not identically 0, but vanishes on . The functions g.(t), g,(¢)
and f(t) are almost periodic on G and f(t) has an absolutely convergent

Fourier series
ft) = 3 aly) (1, t) -

On restricting this equation to @, we get X'a(y)z(f)=0 which implies
a(x) =0 and thus f(t) =0, which gives a contradiction. Hence @ is a dense
subgroup of G.

The relative topology of G on G is, of course, the weakest one for which
the characters y(f) are continuous. If 2(f) is almost periodic on @, it is
a limit of linear combinations of characters in the topology of uniform
convergence on (. As the characters y(t) are uniformly continuous on
G in the relative topology of G, the same is true of z(t). Since @ is dense
in G, z(t) can be extended uniquely to a continuous function on G. Con-
versely, if () is continuous on G, the restriction to &, z(t), is continuous
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in the relative topology of G, and a fortiori continuous in the original
topology of G. Moreover, since 2(t) is almost periodic on G, z(t) is almost
periodic on G.

We shall now give a solution of the multiplier problem, raised in Boch-
ner [3]. This problem appears in differentiation and integration of al-
most periodic functions and more generally in the consideration of linear
operations on 4 which commute with translations.

DrrinITION. A complex valued function g(y) on G* is called a multi-
plier if for every almost periodic Fourier series 2 a(y)x(t), the series
2 «2(0)q(x)x(t) is also an almost periodic Fourier series.

For the case G'=G*=R the continuous multipliers have been deter-
mined by R. Doss [7]. However, the typical multipliers, which are the
Fourier coefficients themselves, show at once that the problem has no-
thing to do with continuity (or even measurability) and besides, the
continuity restriction excludes the most interesting multipliers as we
shall see later. - .

We recall that a complex valued function p(t) on a group @ is called
positive-definite if

2 Pt 1) ox; = 0

4, =1
for arbitrary ¢,, ..., ¢, € G and arbitrary set «, ..., &, of complex num-
bers (no continuity assumed).

TrEOREM 1. The multipliers are precisely the functions of the form

(7) 90 = 7(2) — Palx) + PPaz) — ipa()
where the p,(x) are positive definite functions on G*.

Proor. We prove first that every function of the form (7) is a multi-
plier. ¢(y) is a linear combination of continuous positive definite funec-
tions on the discrete group G*,; and, by the generalized Bochner theorem,
gives rise to a bounded measure x on the compact character group G
such that

®) a) = { (. ) dutt).
G
Now let z(t) ~ Z'a(x) x(t) and let z(t) be the extension of z(¢) to G. Then
® a(n) = Mefel) 70} = \ 20 T B dt
G

From (8) and (9) we get ‘
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(10) a(x) qz) = Sy(t) B dt
where ¢

u(t) = {#(ts) du(s) .
G
Since p is a bounded measure and z(¢) is continuous on G, y(t) is con-
tinuous on G. The restriction to &, y(¢), is almost periodic and by (10)
has the Fourier series

(11) y(t) > X alx) ax) 1(t) ,
and g(y) is a multiplier.

Conversely, let g(y) be a multiplier, such that to any almost periodic
function z(t) ~ 2'a(y)x(t) corresponds another almost periodic function

(12) Q 2(2) o 3aly) q(x) x(t) -

@ is a linear transformation of A into itself. We shall prove that @ is
continuous. By the closed graph theorem (Banach [1, p. 41]), we only
have to prove that if |z, —z| tends to 0 and ||Qx, — || tends to 0, then
@x=y; however, this is obvious.

Consider now the linear form

L(z) = (@2)(e)

on the space A. By the one-to-one correspondence between A and the
space of continuous funections on G, L(z) can be viewed as a linear form
on this latter space and is continuous in the topology of uniform con-
vergence on G, since @ is continuous. Such a form induces a bounded
measure u on G, for which

L(z) = Sz(t) du(t) forall zeAd .
G

We apply this when 2(¢) is a character y(¢) of @, and consequently z(t)
is a character (y, t) on G, and we get

aw = Lo = v due .
G
If p=p,—ps+ip;—iu, is the Jordan decomposition of the measure u
into positive measures, the corresponding decomposition of ¢(y) is of
the form (7), and the theorem is proved.

- REmark. From the proof it is clear that the multipliers that transfer
positive almost periodic functions into functions of the same kind are
precisely the positive definite functions.
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It is well known (Godement [9, Chap. III]), that on the space of Fou-
rier-Stieltjes transforms

q(x) = S (x> t)du(t)
G

there exists a mean value, that is, a form It satisfying (i)—(iv) in section 1,
and these properties determine the mean value uniquely. I also satis-
fies (v) in section 1 as we shall use later. For a Fourier-Stieltjes trans-
form which is an almost periodic function, the two mean values coincide.

We split the bounded measure p into a discrete part and a continuous

part,
H= Ut g,

where 1, is of the form 2;a,e,, and p, vanishes on sets consisting of a
single point. Here ¢, denotes the measure ¢,(f)=f(a) for all feE™(G).
The Fourier-Stieltjes transform g(y) splits accordingly,

(%) = 9.x) + 2a(x) »

2a0) = { (2 D dpal®) = X az, ).

G

where

Hence ¢,4(x) is almost periodic on the discrete group G*; and we have the
Parseval-Bohr relation

(13) Mlgal?) = 3 lasl®.

For the transform ¢,(y) we have by Bochner [4, Kap. IV] and Godement
[9, Chap. IIT]
(14) M(lg.l*) = 0.
From the relation
l91* = lgo® + 9e9a + Gc9a + |9al®

and the Schwarz inequality

1M(2:92)1* = M(Ig.1*) M(124l%)
we see that (13) and (14) can be combiI;ed in the formula
(15) Mlgl?) = 2 lail?.

(This formula has been published recently by Eberlein [8].)
Now let @ be the endomorphism of A corresponding to the multiplier
q(x), that is,

Qzt) > X a(y) qlx) x@)  if  2(t) o I aly) x(t) -
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It is easily seen that these endomorphisms are precisely the ones that
commute with the translations of G.

THEOREM 2. The endomorphism @ is tsomeiric if and only if
(16)  q(xy)a(1) = a(x) o(y)  forall g,y eG* and |q(x)| = 1.

Proor. If @ is isometric it is clear that |¢(y)|=1. We put
r(x) = q()/g(1) .
Let y and v be arbitrary elements of G* and consider the function
yit) = 1 + 2(t) + v71(0) .
Obviously |ly||=y(l)=3. Then
9 = [(L+z+v P = B+x+yt+xt+y+arp+r Tty
and by assumption this is equal to

(A7) 1+14+1+7(x) x+rle ) () 7+
+r(p) p+rixy) xv+r(x e~ 27t

Each term in (17) is <1 in absolute value, and three terms are equal to
1, but since there are only 9 terms, and the supremum is 9, the terms
simultaneously approach 1 arbitrarily closely. In other words, to any
¢ >0 there exists a ¢, such that

r(x) x() = 1 + (&),
(™) x7HE) =1 + <e),
rlp=) p7) = 1 + (&),

r(xy) xy(to) = 1 + <e),

where |(¢)| <&. On multiplying together the two first equations and taking
into aecount that ¢ is arbitrarily small we get r(y~')=r(y)~', which
together with the three last equations implies r(yy)=r(x)r(y), and (16)
follows.

Conversely, if (16) holds, ¢(x)/g(1) is a character on G*; and can
therefore be written (y, s) for some s€G. If z(f) co X'a(x)x(t) then

Q 2(t) > X'a(y) (2, 8) ¢(1) x()
and on the compactification G

(18) Q 2(t) = #(ts) ¢(1),
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which shows that @ is isometric since |z||=|z|. Thus the theorem is
proved.

REMARK. Theorem 2 and (18) show that all the isometric endomor-
phisms of 4 that commute with the translations on G are induced by
translations ¢t — ts on the compactification G, followed by multiplication
with a constant of absolute value 1.

3. The distinguished sets.

DeriniTION. A distinguished set is a subset S of G* with the following
property: Whenever X g.a(x)x(t) is a Fourier series for an almost
periodic function z(f) then 2 £e82(0)x(t) is also a Fourier series for an
almost periodic function zg(z).

We shall be concerned in this section with the problem of determining

these sets.
Theorem 1 gives the answer that the distinguished sets are the subsets

8 of G* whose characteristic functions are of the form

@s(x) = pilx) — Pa(x) + 2ps(x) — tP4(x)

where the p,(x) are positive definite functions on G*. However, a more
explicit description is desirable.
A large class of distinguished sets is exhibited by

THEOREM 3. The distinguished sets which preserve positivity in the sense
that zg> 0 whenever 22 0, are precisely the subgroups of G*,.

We first prove a lemma.

Levma. Let 8 be a subgroup of G*;, 8* the compact annihilator of S
in G and ds the normalized Haar measure on S*.
If 2(t) is almost periodic on G, zg4(t) exists (that is, S is distinguished)
and is given by
(19) Sz(ts) ds = 24(t) .
St
Proor. We put
y(t) = Sz(ts) ds .
Ssi
Then y(¢) is continuous on G and the restriction y(¢) to G almost periodic.
Let y(¢) and 2(t) have the Fourier coefficients b(x) and c(x), respectively,
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(20) bly) = S [ S #(ts) ds] o dt

G sb

= Sds g z(ts) (x, t) dt
st G

= as s)Sz(ts) G 18) dt
st &

= o) { (1, 9) ds .

Si

By the duality theory, S* is the character group of the factor group
G*;[S. If x,¢8, there exists an syeS* such that (y,, s,)+1. We then
have

| o ) ds = (0, 30 { 10 557 3 = (20, 90) { (10, ) o

St sL st
which implies
Vo 91 ds = 0.
SL

It follows from this and (20) that the Fourier series of y(t) is 2 2esC(2) 2(t).
Hence z4(t) exists and equals y(t), which proves the lemma.

ProoF or THEOREM 3. From the remark after theorem 1 we know
that if S is distinguished and z 2 0 implies zg > 0, the characteristic func-
tion pg(x) must be positive definite, that is,

(21) .%’lws(x,'xk‘l) a0, 2 0
s k=

for arbitrary xi, xa - - - » Xx € G* and complex numbers oy, &y, . .., &,.
From the relations |pg(x)| < ¢g(1) and @g(x)=@g(x1) for all yeG* it
follows that if S is not empty it contains 1 and furthermore yeS
implies y—1e8.

Suppose now y,p€8. We write out the condition (21) for y,=y,
X2=v, x3=1 and real «,, «,, x;. By suitable rearrangement we get

(g + g+ 03)? + o0 [@s(xy™) +@glxy)—2] 2 0

which shows that yy-1e8.
Hence 8 is a subgroup of @*;. The rest of the theorem now follows
from the lemma.
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RemARk. In particular we see that the characteristic function of a
subgroup is positive definite, a result proved by Hewitt [12].

The general distinguished sets are more complicated. All finite sets
are distinguished, all translated groups are distinguished, and finite inter-
sections and finite unions of distinguished sets are again distinguished.

Suppose S is a distinguished set. We have the representation

ws(0) = 0 dut®
G

where 1 is a complex bounded measure on G. Since @g(x)ps(x) =@s(x)
we get
(22) Bxp = .

Now u can be uniquely decomposed,

(23) U= e + Pa s

where p; is a discrete measure and p, vanishes on sets consisting of one
single point. By (22) and (23)

B+ Mg = Mo¥Me + 2c*pg + Ha*pg .

The two first terms on the right are continuous and the third term is
discrete. Due to the uniqueness of decomposition,

Ha = Hg*feg
and
Mo = fho *the + 2o * g -

The corresponding Fourier-Stieltjes transforms then satisfy

24(x) = 94(x) 2a(x) »
2e(x) = 2(x) 4:(x) + 294(x) 2.(x) -

g4(x) is therefore the characteristic function @y(x) of a set N. We shall
prove that if G is the additive group of real numbers (here written multi-
plicatively), or, more generally, if G is a group whose character group G*
is infinitely divisible, the set NV either is the entire G* or is empty.

DrrinrTiON. A group H is said to be infinitely divisible if H»=H
for every integer 7 0.

The function gy(y) is the Fourier-Stieltjes transform of a discrete
measure on G and is therefore an almost periodic function on the dis-
crete group G*;. By Maak’s definition of almost periodicity (see [15])
there exists to each £>0 a finite covering of G*,,
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U4, =6+,
v=1

such that
lon(xy) — on(20) < e forall yeG*,,

if y and § are in the same set A,. For e<1 this implies that gy(xy)=
on(29), that is, gx(x) has the period y6-1. We express this as

(24) N, =N if yandd arein the same 4, .

We now define
a~f if «pf-1isa period for N.

This is clearly an equivalence relation in G*. Let {B,} be the correspond-
ing division of G* into classes. (24) shows that each A, is contained in
some B, ; in particular, there are only a finite number of different classes
B,. Let B, be the class that contains the identity element of G*. Then
B, is a subgroup, and the other B, are the cosets of B,. Let m be the
number of different B, and let y be an arbitrary element of G*. Since
G* is infinitely divisible, y can be written y=v™, yeG*. But then
x€B,. Consequently, every element of G'* is a period of N which there-
fore is either empty or the entire G*.

If our distinguished set S is + G*, then N is empty and ¢g(y) is there-
fore the Fourier-Stieltjes transform of a continuous measure. From (14)
follows
(25) Mlps) = 0.

As mentioned earlier, the mean value of Fourier-Stieltjes transforms
satisfies condition (v) in section 1. Equation (25) therefore implies: To
every ¢>0 there exist positive numbers «; with «;+ ... +«,=1 and
elements y,, ..., y, € G* such that (writing S,,=S5,)

(26) o1 9g,(1) + xaPs,(x) +... + o, ps,(x) < & forall yeG*.

This produces a vague picture of the distinguished sets. If G is the group
of the reals, (26) shows trivially that a distinguished set cannot contain
an infinite interval.

We have proved

THEOREM 4. If G'=R, or more generally, if G has an infinitely divisible
character group G*, the distinguished sets S different from G* have ““mean-
density” 0, that is, M(pg) = O.

The theorem does not hold if the assumption of infinite divisibility
is dropped, as one sees by considering the case when G* is the group of
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integers. In this case the distinguished sets have been determined by
H. Helson [11].

4. The case G=R. We discuss briefly the classical case, where @ is the
additive group of real numbers RB. According to section 2 the compactifi-
cation R can be identified with K ;*. R is dense in R and the relative
topology of R in R is the weakest for which the exponentials e?*f are
continuous. The function x(¢) is uniformly continuous on R in this
topology if and only if 2(¢) is almost periodic on .

DerFINTTION. A subset of R is called quasipertodic if it is the intersection
of a finite number of sets of the form

{11l <6 (mod )}, 0<26<1.
From the above remark we arrive at

ProrosiTioN 2. The function x(t) 48 an almost periodic function on R
if and only if for every &> 0 there exists a quasiperiodic set A, such that

(27) lz(t+7) — ()| <& forall tcR and all t€4,.

It was shown by Bogoliouboff by elementary methods that this is
equivalent to Bohr’s definition (see Bohr [6]). However, the proof is not
simple (see Maak [15, §§ 25-27]).

DEerFINITION. A 8set of almost periodic functions on R is called a homo-
geneous system if for every £>0 the set {z(¢)} of numbers which are
simultaneously translation numbers belonging to ¢ for all the functions,
is relatively dense and contains an interval around 0.

In the classical theory of almost periodic functions, homogeneous
systems play an important role, partly due to the following theorem of
Bochner [2]: A uniformly bounded infinite homogeneous system contains
a uniformly convergent subsequence.

The next proposition explains the importance of this notion and shows
that Bochner’s theorem can be deduced from a theorem on equicontinuous
families.

ProrosiTioN 3. A set of almost periodic functions on R is a homo-
geneous system if and only if the extensions to R form an equicontinuous
SJamily.

Proor. If the family {x} is equicontinuous on R, the restrictions to
R also form an equicontinuous family in the relative topology of R.
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Thus, to every £>0 there exists a quasiperiodic set 4, such that (27)
holds for all functions in the family. Since every quasiperiodic set is
relatively dense and contains an interval around 0, the family forms a
homogeneous system. The converse is a simple consequence of a theorem
of Bogoliouboff (see Maak [15, p. 102, Satz 2]).

Similarly as the continuous functions on R can be identified with the
Bohr almost periodic functions on R, the space L*R) can be identified
with the Besicovitch almost periodic functions of exponent 2. In the
last case, however, the correspondence is purely formal, namely through
the Fourier series, because (see Hewitt [12]) the real line R is a null-set
in the Haar measure on R.

5. Permutations of Fourier exponents. We now return to the problem
mentioned in section 1, namely the description of the automorphisms
of the convolution algebra of almost periodic functions.

DEFINITION. A permutation o of G* is called permissible if for any
almost periodic Fourier series ', . g«a(x)x(t), the series 2 zear@(x)a(x) (t)
is also an almost periodic Fourier series.

We have seen earlier that a permutation ¢ of G* induces an automor-
phism 7', of A if and only if the permutation and its inverse are per-
missible.

For every trigonometric polynomial a,y;()+ ... +a,x,() we con-

sider the quantity o+ a7l

m(%v’ CE,) - 1 + 2 la,,l

From the Kronecker theorem it follows that for fixed y,, »=1,2,...,n,
the equation m(y,, @,) =1 for all a, is a necessary and sufficient condition
for the independence of the x,. Therefore the quantity m(y,, a,), taken
for all coefficients a@,, is a measure of the indepencence of y,, ..., ¥,-

3

ProposiTiON 4. The permutation o with ¢(1)=1 is permissible if and

only if
(28) Sup [m(G(XI/)’ a’u)/m(Xw a’r)] < o0,

Qys Xy

Proor. If o is a permissible permutation, then

Tya(t) ~ 2 a(x)o(x)(t)

induces a linear transformation 7', of 4 into itself. By the closed graph
theorem, 7', is a continuous operator and (28) holds. Conversely (28)
shows the existence of an endomorphism on the space of trigonometric
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polynomials which has the same effect as ¢. Since these polynomials
are dense in A, the endomorphism has a unique extension to the whole
of A, and o is permissible.
We also note that
IT,ll = sup [m(o(z,), a,)]m(x,, ,)] ,
Ay, Xy

so obviously ||7',//=z1. The extreme case ||7,||=1 is described in the next
theorem, which is an analogue of a theorem of Beurling, Helson, and
Wendel on the automorphisms of L!, and the proof is similar to that of
Helson [10].

THEOREM 5. Let o be a permisstble permutation for which ||T,)|=1.
Then o satisfies the equation

(29) olxy) o(1) = o(x) o(y)  for all x, vy in G*,

and T, is an isometric automorphism of A. Conversely, every permutation
of the form (29) s permissible, and T, is an isometric automorphism.

Proor. Suppose ¢ is permissible and ||7']|=1. Consider for an arbi-
trary s € G the linear form

L(z) =T, 2(s) forall zed .
Then we have
(30) |Lg(2)| = T2l = |2l -

L, can be regarded as a continuous linear form on €*(G) and induces a
measure y, on G such that

(31) 7, 2(8) = {2() duy(t) -

G

By (30), |lusll=1. For a character z(¢)=x(f) equation (31) takes the form

(32) (ot 8) =\ vy dm .

We put r(y) = (a(x)s~(1), s). Then 7(x) is a Fourier-Stieltjes transform
of a measure v with |jv||=|gl|S1. Also r(1)=#(G)=1. It follows from
the relations ||| <1 and »(G)=1 that » is positive.

The function r(y) is therefore positive definite on G*;. We split »
into a discrete and a continuous part and get

=3 b,-esi + 2 b, 20),
where
(33) 1=9(G)="b + AG).
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By (15

y o M(rf?) = 3 oyl
Since |r(x)|=1, ;20 and 120, we have 1=2562<23b,<1, which im-
plies that all the b, are 0 except one, say by, which is 1. By (33), A=0.
Hence v=¢,, and r(x)=(a(x)a*1(l), s) is a character on G*;. Since s is
arbitrary in G, (29) follows.

Suppose conversely that (29) holds. Since the translation y — ya(1)
obviously induces an isometric automorphism of 4, we can assume
a(1)=1. Thus, ¢ is an automorphism of G*;, and the mapping ¢ defined
by (8(), x)=(¢, o(y)) for all y and t is an automorphism of G (alge-
braically and topologically). Consider the operator 7', defined by
T,=z(t)=#(d(t)). T, is linear and isometric. If z(f)=y(t), then

T,2(t) = o(2)()
80 ¢ is a permissible permutation. The same conclusion holds for ¢-1,

and T, is therefore an automorphism of 4. Thus, theorem 5 is proved.

A counterexample. Since an almost periodic Fourier series with inde-
pendent exponents is absolutely convergent, it is natural to ask whether
a permutation that maps an independent set of characters onto itself,
leaving the others fixed, is permissible. We show by an example that
this is not in general the case. Let

(34) z(t) o 3 a(A) et

be an almost periodic function with (8): By, Bs, - .. as a basis for the set
of Fourier exponents such that 2X'a(g,) et is not an almost periodic
Fourier series. Such a function exists by a theorem of Doss ([7, § 3]).
Suppose that every permutation ¢ of B which maps (8) onto itself and
leaves all other points fixed is permissible. For every such ¢

(35) 2 a((a(d)) e

is an almost periodic Fourier series. The same is true for the formal
difference of (34) and (35) so by a theorem of Bohr [5]

(36) é‘la(m) — a(o(B))| <
on the other hand

DlaB) = and 3 |a(By))? < .

We put a(B;)=a,;, o(;)=0(t) and assume that the a, are ordered after
decreasing magnitude of their absolute values. We shall obtain the

Math. Scand. 3. 5
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desired contradiction by constructing a permutation o of (8) such that

(36) fails to hold.
Let K, K,, ... be an increasing sequence of positive numbers tending

to co. We can determine m, and m, such that
|y + [ag] + .. . +]ay, | > 2K,
laM2| < ‘Kl/ml'

Put
0(1) = My, G(ml+1) =1 ’

a(2) = my+1, a(my +2)

Il
o

a(my) = me+m;—1, o(my+my—1) = my—1,

and let ny=m,+my—1. We then have
ny Kot
2 la; — @yl 2 2: “ail—lau(i)ll
=1 =1
m
z 121’ llas] — a.q)l|

my
= 2 @] — |2l
=1

z 2K, — m K,[m,
=K, .
We have defined a permutation ¢ of the numbers 1, 2, ..., n, such that

ny
%’ @l = |aoe| = Ky .
1=

An obvious induction process gives the desired contradiction.
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