A PROBLEM IN FACTORIZATION OF POLYNOMIALS

L. CARLITZ and F. R. OLSON

If f(x) is a cubic polynomial with rational coefficients and k is a constant, $f(x + kf(x)) = f(x) \varphi(x),$

we seek conditions that $\varphi(x)$ factor into two cubics.

Let f(x) be a polynomial of degree n with coefficients in the rational field R and irreducible over R. It is easily seen that if k is an arbitrary rational number different from zero then

(1)
$$f(x+kf(x)) = f(x) \varphi(x),$$

where $\varphi(x)$ is a polynomial with rational coefficients. We note that the factorization property of (1) is not altered if x is replaced by x+c. Further, if $\varphi(x)$ has the factorization

(2)
$$\varphi(x) = \varphi_1(x) \varphi_2(x) \dots \varphi_t(x) \qquad (\text{degree } \varphi_i(x) = n_i)$$

then $n|n_i$. For if $\varphi_i(\varrho) = 0$ then $f(\varrho + kf(\varrho)) = 0$. Hence a root r of f(x) may be expressed as a polynomial function of a root of $\varphi_i(x)$ and we see that the field $R(r) \subseteq R(\varrho)$. This implies $n|n_i$.

We have the Taylor expansion

$$f(x+kf(x)) = f(x) + f'(x)kf(x) + f''(x)k^2f(x)^2/2! + \dots$$

so that

(3)
$$\varphi(x) = 1 + kf'(x) + f''(x)k^2f(x)^2/2! + \dots$$

It follows that if $\varphi(x)$ should have a root in common with f(x), this would also be a root of the equation

$$1 + f'(x)k = 0,$$

but this is impossible because all the irreducible factors of (1) are of degree $\geq n$.

If f(x) is quadratic, (1) factors into two irreducible quadratics for all

Received September 20, 1954.

 $k \neq 0$. We next consider the cubic case and find conditions that $\varphi(x)$ factor into two cubies.

There is no loss of generality in considering the irreducible cubic

$$f(x) = x^3 + px + q$$

and assuming

(5)
$$f(x+kf(x)) = f(x) \varphi_1(x) \varphi_2(x) .$$

Let r, r_1 , and r_2 be the roots of f(x) and ϱ a root of $\varphi_1(x)$, say. Hence we may write

 $\varrho + k(\varrho - r)(\varrho - r_1)(\varrho - r_2) = r$

which implies, since $r \neq \rho$,

(6)
$$1 + k(\varrho - r_1)(\varrho - r_2) = 0.$$

Then

(7)
$$\varrho = \frac{1}{2}(r_1 + r_2 \pm D^{\frac{1}{2}})$$

where

$$D = (r_1 + r_2)^2 - 4r_1r_2 - 4/k = -3r^2 - 4p - 4/k = -3r^2 - K.$$

Since ϱ is to satisfy a cubic equation, it is necessary that D be a square in the field R(r), that is

(8)
$$-3r^2 - K = (a_0 + a_1r + a_2r^2)^2,$$

where a_0 , a_1 and a_2 are rational. Comparison of coefficients in (8) yields

$$a_1^2 - a_2^2 p + 2a_0 a_2 + 3 = 0,$$

$$-a_2^2 q + 2a_0 a_1 - 2a_1 a_2 p = 0,$$

$$a_0^2 - 2a_1 a_2 q + K = 0.$$

Elimination of a_0 from the first two equations in (9) and division by a_1^3 gives

(10)
$$1 + p(a_2/a_1)^2 + q(a_2/a_1)^3 = -3(1/a_1)^2.$$

Hence K and in turn k is determined by the solutions of a Diophantine equation equivalent to

(11)
$$y^2 = x^3 - ax - b.$$

For a discussion of (11) see [1, pp. 255-260].

For p=0 equation (10) may be written as

$$(12) (a_1+1)^3 + (a_1-1)^3 = -2qa_2^3.$$

Thus if $q = \pm 4t^3$, (12) is a Fermat equation with the choice of a_1 limited

to ± 1 . Hence we find from (9) that for q = -4 the only value for k is k = -1/3. Thus for $f(x) = x^3 - 4$ we have the factorization

$$-27f(x-\tfrac{1}{3}f(x))=(x^3-4)(x^3+3x^2+3x-1)(x^3-3x^2-3x+11),$$

as can be verified without much trouble.

For q = -2 equation (12) has no solution [1, p. 269, ex. 144] and (1) with $f(x) = x^3 - 2$ becomes

$$f(x+kf(x)) = f(x) (k^3x^6 + 3k^2x^4 - 4k^3x^3 + 3kx^2 - 6k^2x + 4k^3 + 1),$$

where the sextic is irreducible for all k. On the other hand for q = -9/2 equation (12) has an infinity of solutions [1, p. 246] and hence $f(x) = x^3 - 9/2$ permits the desired factorization for infinitely many k.

Thus it is seen that for a given cubic the number of choices for k may be zero, finite or infinite.

REFERENCE

1. Trygve Nagell, Introduction to number theory, New York, 1951.

DUKE UNIVERSITY, DURHAM, N. C., U.S.A.