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A PROBLEM IN FACTORIZATION OF POLYNOMIALS

L. CARLITZ and F. R. OLSON

If f(x) is a cubic polynomial with rational coefficients and & is a

constant,
[+ kf(x)) = f(®) p(2) ,

we seek conditions that ¢(x) factor into two cubics.

Let f(x) be a polynomial of degree n with coefficients in the rational
field R and irreducible over K. It is easily seen that if £ is an arbitrary
rational number different from zero then

(1) f@+kf@) =F@ e,

where ¢(z) is a polynomial with rational coefficients. We note that the
factorization property of (1) is not altered if z is replaced by x+c.
Further, if ¢(x) has the factorization

(2) ¢(@) = p1(x) @a () ... (x)  (degree @ (x) =mn,)

then n|n;. For if ¢;(¢) =0 then f(p + kf(g))=0. Hence a root r of f(x)
may be expressed as a polynomial function of a root of ¢,(x) and we
see that the field R(r)< R(p). This implies n|n,.

We have the Taylor expansion

f(@+kf(@) = f@) + f(@)kf(z) + f' () k2 (z)?/2! +. ..
80 that
(3) o) = 1 + kf'(x) + fr@)Rf @2 +....

It follows that if p(2) should have a root in common with f(z), this would
also be a root of the equation

1+ fl(x)k =0,

but this is impossible because all the irreducible factors of (1) are of
degree =n. .
If f(x) is quadratie, (1) factors into two irreducible quadratics for all
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k+0. We next consider the cubic case and find conditions that ¢(x)
factor into two cubics.
There is no loss of generality in considering the irreducible cubic

(4) fl@) = &+ pz+g
and assuming
(5) f@ + kf (@) = f(@) p1(2) pa(a) -

Let 7, ry, and r, be the roots of f(x) and ¢ a root of ¢,(x), say. Hence

we may write
e+ k(e—r)(e—r)le—ry) =7

which implies, since r=+ g,

(6) 1+ k(e—ry)(e—12) = 0.
Then

(7) 0 = }(ry + 1y + DY)
where

D = (ry+715)? — 4ryry — 4/k =—-3r - 4p —4/k=—-3r2 - K.

Since g is to satisfy a cubic equation, it is necessary that D be a square
in the field RB(r), that is

(8) —3712 — K = (ay+ a,r + a,r?)?,

where a,, a, and a, are rational. Comparison of coefficients in (8) yields
a2 — a2p + 2a5a,+3 = 0,

(9) — a5’ + 2004y — 2a,a,p = 0,
ay? — 2a,0,9 + K =0.

Elimination of @, from the first two equations in (9) and division by
a3 gives

(10) 1 + p(ay/a;)? + q(aqfa,)® = —3(1/ay)?.

Hence K and in turn k is determined by the solutions of a Diophantine

equation equivalent to
(11) y:=a—ax—>b.

For a discussion of (11) see [1, pp. 255-260].
For p=0 equation (10) may be written as

(12) (@, +1)% + (@, —1)® = — 2qa,®.

Thus if g= + 413, (12) is a Fermat equation with the choice of a, limited
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to +1. Hence we find from (9) that for ¢= —4 the only value for &
is k= —1/3. Thus for f(x)=2%—4 we have the factorization

— 27f(x — 3f(x)) = («® — 4) (z® + 322 + 32 — 1) (2® — Ba? — Bw + 11),

as can be verified without much trouble.
For ¢= — 2 equation (12) has no solution [1, p. 269, ex. 144] and (1)
with f(z)=a%—2 becomes

f@+kf(x) = f(@) (K32 + 32t — 4333 + 3ka? — 6k2x + 413 + 1),

where the sextic is irreducible for all k. On the other hand for ¢= — 9/2
equation (12) has an infinity of solutions [1, p. 246] and hence f(z)=
2% — 9/2 permits the desired factorization for infinitely many #.

Thus it is seen that for a given cubic the number of choices for %
may be zero, finite or infinite.
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